

AFD Common API

Unified Access to AFD Address
Management Solutions

Desktop Integration Guide

2023

AFD Common API
Desktop Integration Guide – January 2023

 - 2 -

Table of Contents

1. Introduction .. 5
2. Getting Started ... 5
3. Using the API Wizard ... 7

3.1. Selecting your product and environment .. 7
3.1.1. Address Management ... 7
3.1.2. BankFinder .. 7
3.1.3. Nearest .. 7
3.1.4. Standard API .. 8
3.1.5. Postcode Everywhere XML API ... 8

3.2. Nearest Database - Nearest only .. 9
3.3. API Options ... 10

3.3.1. Field Types .. 11
3.3.2. List Box ... 11
3.3.3. Displaying Error Messages ...12
3.3.4. International Service Authentication Options...........................12
3.3.5. Postcode Everywhere Server Options .. 13

3.4. Lookup Type – Address Management / Nearest Only 14
3.4.1. FastFind ... 14
3.4.2. Property, Postcode Lookup Only – Address Management15
3.4.3. FastFind with Multiple Location Support – Nearest 15
3.4.4. Postcode Lookup Only .. 15

3.5. Generate Sample .. 15
3.6. Implement Your Code .. 16
3.7. Where To Go From Here ... 17

4. The Code Explained (Standard API) .. 18
4.1. General Declarations .. 18

4.1.1. Type or Structure .. 18
4.1.2. Function Declaration ... 19
4.1.3. Field Specification String ... 20
4.1.4. Function Type Constants ... 24
4.1.5. Skip Constants – UK Address Management Only 26
4.1.6. Clearing System Constants – BankFinder Only 28
4.1.7. Success Code Constants .. 28
4.1.8. Error Code Constants ... 29
4.1.9. Refiner Status Code Constants .. 31
4.1.10. AFDErrorText Function .. 34

AFD Common API
Desktop Integration Guide – January 2023

 - 3 -

4.1.11. AFD RefinerCleaningText Function .. 34
4.1.12. Clear Function ... 34
4.1.13. afdInitDLL ... 34
4.1.14. Differences with .NET ... 34
4.1.15. List Functions – Address Management Only 35
4.1.16. Utility Declarations – Address Management Only 39
4.1.17. String Utility Declarations – Depreciated and Unsupported 39
4.1.18. Grid Utility Declarations (UK Address Management Only)41
4.1.19. Email Utility Declarations ... 43

4.2. Lookup Function .. 44
4.3. Search Function ... 50
4.4. List Fetch Function.. 55
4.5. Account Number Validation – BankFinder Only 58
4.6. Card Number Validation – BankFinder Only 61
4.7. List Functions – Address Management Only 63
4.8. String Utility Functions – Depreciated and Unsupported 69
4.9. Grid Utility Functions – UK Address Management Only 71
4.10. Email Utility Function ... 73
4.11. Clean Function – UK Address Management Only 75

5. The Code Explained (PostcodeEverywhere XML) 79
5.1. General Declarations ... 79
5.2. Calling the PostcodeEverywhere XML Server 80

5.2.1. The Data Parameter ... 82
5.2.2. The Task Parameter .. 82
5.2.3. The Fields Parameter .. 86
5.2.4. The Skip Parameter – UK Address Management Only 88
5.2.5. Additional Parameters .. 89
The following additional parameters can be supplied in the query string
to set Common API options: ... 89
5.2.6. Database Parameters for Nearest.. 89

5.3. Lookup Function ... 91
5.4. Search Function ... 94
5.5. Retrieve Function .. 96
5.6. Account Number Validation – BankFinder Only 99
5.7. Card Number Validation – BankFinder Only 102
5.8. List Functions – UK Address Management Only 104
5.9. String Utility Functions – Depeciated and Unsupported 108
5.10. Grid Utility Functions – UK Address Management Only 110

AFD Common API
Desktop Integration Guide – January 2023

 - 4 -

5.11. Email Utility Function – UK Address Management Only 113
5.12. Clean Function – UK Address Management Only 115

6. Other Features .. 120
6.1. Selecting TraceMaster Datasets ... 120
6.2. Determining the Product in Use .. 120
6.3. Using Welsh Data in Postcode Plus .. 121
6.4. DX Member Data .. 124
6.5. International Data ... 125

6.5.1. Enabling International Support .. 125
6.5.2. Making use of the data returned ..126
6.5.3. Obtaining a list of countries ... 127
6.5.4. Notes regarding International addressing 127

7. Appendices ...128

AFD Common API
Desktop Integration Guide – January 2023

 - 5 -

1. Introduction
The AFD Common API provides full access to the AFD API for all our products.
The API is easy to use and quick to implement, while balancing that with
providing full flexibility. This enables you to rapidly develop using the API with
practically any development environment to provide the data that you
require. All AFD products provide rapid lookup and search functionality
allowing you to implement address management solutions and provide
bank data, account, and card validation.

Our address management products are fully interchangeable with the
Common API, meaning that you can include the name and all address fields
in your integration even if you are only using our lowest level Postcode
product. Your integration will then function fully with our Postcode Plus or
Names & Numbers product should you, or your customer, wish to upgrade
in the future. Similarly, if you only develop for one product now, it’s easy to
add fields and features from another later without having to learn a whole
new API.

To make life as easy as possible, the AFD Common API comes with a Wizard
which will generate sample projects and code for the major development
environments, and we are adding more each quarter. The AFD Common API
is also backed up by our free customer support services. You can visit our
website at www.afd.co.uk/support for full developer support with using our
API.

2. Getting Started
We recommend that for the most rapid development and to help you know
where to start that you use our API Wizard to generate a sample project for
your development environment. If your environment is not one that is listed,
then select one that is closest to your own and use that as a basis for your
coding. By looking at a sample project you can get a look and feel for how
the API works and what you can do with it, and you can easily copy and
paste the code from that into your own and adapt it to meet your needs.
Our sample projects work in the way that your own application is most likely
to work, but also keep code to an absolute minimum, whilst being well
commented, so that you can transfer the code with ease. The API Wizard
also provides the code to go into a module or class in your application with

AFD Common API
Desktop Integration Guide – January 2023

 - 6 -

all our API declarations and constants included which you can copy and
paste into your own application. The code for lookup and search
functionality is also provided and can be similarly copied and pasted.

AFD Common API
Desktop Integration Guide – January 2023

 - 7 -

3. Using the API Wizard
To load the Wizard, look for the AFD Common API Item on your start menu,
under which you will find the API Wizard shortcut.

3.1. Selecting your product and environment

The first step in the Wizard allows you to select the type of AFD product you
will be integrating with and the development environment that you are
using. The AFD product types are as follows:

3.1.1. Address Management

This includes AFD Postcode, Plotter, Postcode Plus, Names & Numbers,
TraceMaster, ZipAddress and WorldAddress. Functionality is also included
for AFD Refiner which can be used to clean addresses if you have a Refiner
API license. The same code generated can be used with any one or all of
these products. You should select this option if you are looking for address
management functionality – i.e., being able to lookup and search for
addresses.

3.1.2. BankFinder

This is for integrations using our AFD BankFinder product. If you have
BankFinder and wish to integrate this for looking up or searching for Bank
details, validating account or card numbers then this is the option you will
require.

3.1.3. Nearest

This is for integrations for our AFD Nearest feature. This is available with all
our address management products which contain grid references (i.e., AFD
Plotter, Postcode Plus, Names & Numbers and TraceMaster). This allows you
to utilise our Nearest feature to connect to your database of stores or
customers to enable the nearest to be found by looking up a postcode,
locality, or town.

AFD Common API
Desktop Integration Guide – January 2023

 - 8 -

You can choose any of the following environments to integrate with. If the
environment you require is not listed, then please select that closest to your
own to base your integration on. You should note that we are continually
adding environments, so if you have one that you would like to see added,
or are having problems integrating with, please contact our support team
(www.afd.co.uk/support) for assistance.

For some environments you will also be given the option as to which type of
integration you require. The options are as follows:

3.1.4. Standard API

This is the most commonly used option and is used when the application is
talking to our software directly on the local machine. This can be used with
either desktop applications or client/server applications as long as the
server used is the same one that our software is running on, and you have
the appropriate server license if applicable. This is the most direct method
for calling our API.

3.1.5. Postcode Everywhere XML API

Our XML API is perfect for server-based integrations where either the
language makes XML a more desirable delivery mechanism or in some
cases, such as Java, is the only suitable mechanism. It is also ideal where

AFD Common API
Desktop Integration Guide – January 2023

 - 9 -

you wish to have the AFD product running through PostcodeEverywhere (our
XML Server) on a different machine to that which is running your application,
or you wish to use our own hosted or Postcode Internet Online per-click
service. If you do not want to install the AFD software locally on a machine
but wish to access it over the network through XML then again, this solution
is ideal. You will need to have a server license and have
PostcodeEverywhere installed to use this functionality.

3.2. Nearest Database - Nearest only

If you are integrating Nearest, the next stage of the Wizard will prompt you
to select the database and specify the grid reference fields that you wish to
connect to using the Common API. You can either connect using a DSN to
an ODBC database source or use the Database File option to choose an
Access, FoxPro or Paradox table to use instead.

After specifying your database settings, you should click the Connect button
where the Wizard will attempt to connect to your database. When
successful it will update the fields displayed below. For Nearest to work
correctly you need to ensure the correct grid easting and northing fields are
selected. These should be on the OS GB grid system. If you need to add grid
reference fields to your database and populate it, then please do this prior

AFD Common API
Desktop Integration Guide – January 2023

 - 10 -

to running the Wizard and use the product front-end or AFD Refiner to add
the grids to your database.

The Common API includes a List field to generate a string to display in a list
of results for the user to select from. You should therefore select the fields
from here that you wish to display in this List. We would recommend that
either the Miles or Km field is included to provide the distance and then any
other fields from your database that you desire. Alternatively, you may
decide to generate this yourself as all fields will be returned from Nearest or
may not be using a list, but it may still be worth checking these to use for
testing purposes.

A Primary Key field is also required to re-retrieve a record when selected
from the list.

3.3. API Options

The next stage of the Wizard presents you some options related to how you
wish the API to work with your application. Not all the options presented here
are available with all product types and development types. Where an
option does not appear, it is not applicable in your case.

AFD Common API
Desktop Integration Guide – January 2023

 - 11 -

3.3.1. Field Types

This allows you to select the format in which you require the address to be
returned. Most developers will require the default Standard Fields option as
this presents the address in the format most often used in labels and when
writing an address. The Raw PAF fields provide the address in a raw format
with, for example, the house number and building details separate. This can
be useful for those capturing addresses for a database which stores
addresses in this form. The BS7666 option provides addresses in the
proposed BS 7666-5:2006 standard for a postal gazetteer allowing you to
store addresses that conform to that standard (For more details on how our
fields can be used to provide addresses in this standard, and other required
meta data please see Appendix G of this manual). The USA Fields option is
primarily intended for ZipAddress customers but note that regardless of the
format you use, UK, USA, and International addresses will be returned in that
format.

For address management products you can also select the International
fields option which is recommended if you are using International data as it
provides not only the component address fields for international address
data but also provides the address formatted for correct addressing and
label printing, so you are not left to try and format these for different
countries yourself.

Note that BankFinder does not provide the proposed BS 7666-5:2006 format
as it is not strictly applicable to that product which is not providing an
address gazetteer.

3.3.2. List Box

Lookups and Searches can often produce multiple results from which the
user will have to select the correct address or bank. The only time you do
not have to worry about a list box is if you are solely going to validate
account or card details in BankFinder without wishing to lookup branch
details, even simple postcode lookups in our AFD Postcode product can
sometimes yield multiple results as some postcodes contain more than one
street.

Most developers will wish to include a list box on their form for this purpose
and retain full control over layout, positioning and its look and feel. However,

AFD Common API
Desktop Integration Guide – January 2023

 - 12 -

the option is also provided to use a list box provided by the API. The
advantage of this is that if you wish to add a button, for example to lookup
the address to an existing application and be able to fill in the whole address
without having to accommodate a list box or redesign an existing screen
layout this can easily be achieved. It also makes the API simpler to integrate
as you don’t have to worry about the facility to cancel long searches
manage multiple results etc. – this is all done for you. Our example project
and generated code make all this easy and should you opt to use the API’s
own internal list box now it’s easy to change to use your own later by
comparing the code. The internal list box will only be displayed when more
than one result is returned for the user to choose from, or in the case of a
long search so that the user is able to cancel it.

You should be aware that the API list box is only suitable for desktop
applications that run on the same machine and desktop as the API as it will
need to pop-up a window on the machine. Server applications will need to
include their own list box and as such this option is not available when using
XML solutions.

3.3.3. Displaying Error Messages

The facility to display error messages before returning to your own
application is also included. This is most commonly used in conjunction with
the facility to display the list box for you and means that in cases where an
error occurs, such as no records found from a lookup, or an error opening
the data files etc. this will be displayed to the user for you. The API Wizard
includes the function to convert an error code to a string in the code
generated for you, so displaying this yourself is easy, but if you’d like it done
for you the option is there. Again, this is only applicable to desktop
applications.

3.3.4. International Service Authentication Options

When calling the Common API through the standard DLL (not using a
Postcode Everywhere server) you can still make use of International data if
you have signed up to our International Service. This is done by the DLL
passing lookups and searches where a non-UK country has been supplied
to our server. To do this you will need to supply the serial number and
password you were issued with for this service. You can also optionally
include a userid which will identify this application.

AFD Common API
Desktop Integration Guide – January 2023

 - 13 -

3.3.5. Postcode Everywhere Server Options

When using the PostcodeEverywhere XML method of integration you will
also be given a number of options required to connect to the
PostcodeEverywhere server. These are not all required in all cases:

Server Name: If you are using our hosted service there is no need to
change this setting. If you have your own server you will need to enter its
name (as it will be accessible from your client machines) and include any
port if not port 80, e.g., http://myserver:81

Serial Number: This is only required if you are using our hosted service
(pce.afd.co.uk) or requiring International data (which must be passed to
our server even if you are using your own for UK data). It is the serial
number you were given on your license certificate when you purchased
your license to use the service.

Password: Again, this is only required if you are using our hosted service or
International service and you should be aware of what this is if you have
purchased a license for it.

User ID: This field is optional and allows you to identify the user or
application that uses the service. For example, you could use myapp to

AFD Common API
Desktop Integration Guide – January 2023

 - 14 -

identify this application and myapp2 to identify another which could be
helpful if you are reviewing logs later. Alternatively, you could alter the
sample code to modify this based on the user using your software.

3.4. Lookup Type – Address Management / Nearest Only

The final option enables you to select the type of lookup that you require. It
is easy to change this option in your code later as these are defined as
constants. Please note that even if you take the option to only allow
Postcode lookup’s, full code is still provided for searching by specific address
fields, so it is still possible to search for addresses when you don’t know the
Postcode.

The lookup options are as follows:

3.4.1. FastFind

This fully functional lookup mode allows the user the option to not only be
able to enter a postcode in the lookup field, but also full find string’s, such as
with address management products entering “Commercial Street,
Birmingham” to find all records matching that string. In the case of Nearest
a locality and/or town string can be entered. This includes looking up

AFD Common API
Desktop Integration Guide – January 2023

 - 15 -

addresses from partial postcodes and attempts to fix common typing errors
in postcodes entered. This mode provides the most functionality and
provides rapid searching from the lookup field. With Address Management
products it’s downside is that some lookup’s can take some time,
particularly with Names & Numbers due to the quantity of data, and so while
lookup’s can be canceled, in some cases you may prefer to restrict lookup’s
further.

3.4.2. Property, Postcode Lookup Only – Address Management

This mode enables you to lookup an address from its postcode (or zipcode),
or by optionally including a property number, name, or organisation name
to narrow the lookup down (e.g., 304, B11 1AA). In AFD Postcode Plus, Names
& Numbers,TraceMaster and ZipAddress this will only return addresses
matching the property specified. AFD Postcode and Plotter do not contain
property data, however in this mode any number supplied will be returned
with the address.

3.4.3. FastFind with Multiple Location Support – Nearest

This method is the same as FastFind, but where a lookup for a locality or town
results in multiple matches the user will be presented with a list of locations
to choose from. When they select the one they want, another lookup is
carried out to find the nearest to the selected location.

3.4.4. Postcode Lookup Only

This mode provides straight forward postcode (or zipcode) lookup
functionality. The user can enter a full postcode (or zipcode) only and will
get back a list of results on that postcode to select the address from (or in
the case of Nearest will get the Nearest results to that postcode).

3.5. Generate Sample

This is not applicable to a few development environments – please skip to
section 3.5 if this is not displayed.

The next stage enables you to generate an example project which contains
all the code to carry out lookups and searches using your chosen product
type and environment. You can use this to help get an idea as to how the

AFD Common API
Desktop Integration Guide – January 2023

 - 16 -

integration works to decide how best to integrate your AFD product in your
own application. If you are creating a new application, you can use the
example generated as a starting point for your own. Alternatively, you can
also easily include the code module or class included in the project in your
own application and copy and paste code from the lookup and search
buttons (and list box if applicable) into your own application.

3.6. Implement Your Code

Finally, you are given clickable links which will open a window from which
you can copy and paste code into your own application. This is as an
alternative from obtaining it from the example generated. You will always
need to include the General declarations in a code module, or class as
described (C++ environments have both a header (.h) and code (.cpp) file
to include). You can then copy and paste the Lookup and Search code as
desired.

AFD Common API
Desktop Integration Guide – January 2023

 - 17 -

3.7. Where To Go From Here

Now that you have your sample project, if applicable, and sample code you
can customize the integration as desired. The sample projects are based
around a form, using a list box – but you can of course change this to output
results to a file, a database etc. if desired. Should you wish to alter the
settings that you have chosen you can re-run the Wizard and the comments
provided in the code and module make it easy to customise the integration
to suit your needs. The rest of this document describes the functionality in
more detail should you require this to help understand how the integration
is working or wish to customise any aspect of it.

If you have a Refiner API license and wish to clean addresses, you can easily
see this too in the sample project. First add a new button next to the “Search”
button. On the final “Implement Your Code” window select the “Clean
Address” link and copy and paste the code into the Click event for that
button. You can then enter an address to clean on the left and see the
resulting cleaned address on the right.

AFD Common API
Desktop Integration Guide – January 2023

 - 18 -

4. The Code Explained (Standard API)
Note: Please see Section 5 if you are using the PostcodeEverywhere XML
functionality for an explanation of that.

4.1. General Declarations

4.1.1. Type or Structure

All code calling the Common API will need to include a module, class, or
header and cpp file (depending on the environment) which includes the
declarations required to use the AFD Common API. This file can be included
in any project and contains all you need to easily use the full functionality of
the API in accordance with your needs.

This code will start with a type or structure declaration which contains all the
fields for the product type that you are integrating. This will take account of
options you may have selected, for example the address format. By
providing all available fields you can easily see the data which may be
available and take advantage of it. You should always note that not all fields
may return data for all underlying products and not all fields are searchable.
For a list of the fields available in each product and to find out which ones
are searchable please refer to the appropriate appendix:

Appendix A – Address Management Fields
Appendix B – BankFinder Fields
Appendix C – Nearest Fields

While we would recommend that you keep all fields present, should you wish
to thin this out, you can remove any unwanted fields, as long as you also
remove them from the field specification string described below.

VB Type returning only basic Address fields and fields necessary for lookup and result retrieval:

Type afdAddressData
 Lookup As String * 255
 Name As String * 120
 Organisation As String * 120
 Property As String * 120
 Street As String * 120
 Locality As String * 70
 Town As String * 30
 Postcode As String * 10

AFD Common API
Desktop Integration Guide – January 2023

 - 19 -

 PostcodeFrom As String * 8
 Key As String * 255
 List As String * 512
End Type

C++ Structure returning only basic Address fields and fields necessary for lookup and result retrieval:

struct afdAddressData {
 char Lookup[256];
 char Name[121];
 char Organisation[121];
 char Property[121];
 char Street[121];
 char Locality[71];
 char Town[31];
 char Postcode[11];
 char PostcodeFrom[9];
 char Key[256];
 char List[513];
 afdAddressData(){ // constructor - zero the contents
 clear();
 }
 void clear(){
 memset(this,'\0',sizeof(*this));
 }
};

Note that the C++ declaration has fields one character larger than the VB one as we are allowing for the
addition of a null terminator. The C++ structure also has code to clear the structure negating the need for an
additional method to do this.

4.1.2. Function Declaration

Next comes the function declaration which is used to perform all operations
with the Common API. This is the AFDData function, found in the afddata.dll
(or afddata64.dll for 64-bit systems). It has the following parameters:

DataName (String)

Operation (Long)

tData (Any)
 fields to use to lookup and return results.

The function returns a long which is the result code. This will be >= 0 if the
function is successful, or < 0 in the case of an error (constants for this are
described below).

AFD Common API
Desktop Integration Guide – January 2023

 - 20 -

Example VB Declaration for AFDData:

Public Declare Function AFDData Lib "afddata.dll" (ByVal dataName As String, ByVal operation As Long, tData As
Any) As Long

Example C++ Declaration for AFDData:

long __stdcall AFDData(char* dataName, long operation, char* tData);
typedef long(__stdcall *AFDDATA)(char* dataName, long operation, char* tData);

4.1.3. Field Specification String

A field specification string is described next, this will vary between the
different product types (Address Management, BankFinder and Nearest). Its
purpose is to tell the Common API the product type in use and the fields
required as well as any additional options. It is a string in the following
format:

{Data Name}@{Options}<{Refiner Options}>{{International}}@{Field List}

{Data Name} will be one of the following:

Address Address Management Products
BankFinder AFD BankFinder
Nearest* Nearest Integration
List Functions to list the alias localities for any address.
 As well as retrieving lists of possible field values (Names
 & Numbers and TraceMaster only).
Grids Grid Reference related utility functions
Email Email utility function
String - Deprecated String utility functions

* With Nearest this will be followed by your database details in the following format:

Nearest:{DBType}:{DBName}:{UID}:{PWD}:{SQL}:{Primary}

Where:
DBType: The type of database, O=ODBC, A=Access, P=Paradox, X=Xbase
DBName: The DSN or database file name (should contain > in place of :)
UID: Any username needed to connect to the database (ODBC Only)
PWD: Any password needed to connect to the database (ODBC Only)
SQL: The SQL string to use to query the data (N/A for FoxPro/Xbase)
Primary: The Primary Key field

AFD Common API
Desktop Integration Guide – January 2023

 - 21 -

{Options} - One or more of the following options can be used as required:

U – Specifies that the structure passed is in Unicode (Wide Bytes)

L – Specifies that list items should not contain a Tab. Tabs are useful as they
help align results correctly with each other; however some environments
have list boxes which do not support these and so this option allows them
to be omitted.

X – Specifies that Null Terminators should be used rather than space
padded values (particularly useful in languages such as C/C++)

F – Specifies that Individual Fields will be retrieved from the Common API
rather than a structure – see Appendix I for more information.

G - Specifies that approximate grid references for the locality or town of the
address will be supplied for any location which does not contain a grid
reference for that postcode (for example some non-geographical
addresses, Isle of Man and Channel Islands etc.).

R - Specifies that Royal Mail Postzon grid references are used in-preference
to GeoRef grid references.

{Field List} – A list of fields and their lengths to retrieve. (See Appendix A, B
or C as appropriate for a list of the possible fields). These are each specified
in the following format:

{Field Name 1}:{Field Length 1}@...{Field Name n}:{Field Length n}

Where
{Field Name x} – Specifies the name of the field.
{Field Length x} – Specifies the length of the field.

Example VB Declaration for the Field Specification string matching the VB type previously given:

Public Const afdFieldSpec =
"Address@@Lookup:255@Name:120@Organisation:120@Property:120@Street:120@Locality:70@Town:30@Postcod
e:10@PostcodeFrom:8@Key:255@List:512"

AFD Common API
Desktop Integration Guide – January 2023

 - 22 -

Example C++ Declaration for the Field Specification string matching the C++ structure previously given:

static char afdFieldSpec[2048] =
"Address@LX@Lookup:256@Name:121@Organisation:121@Property:121@Street:121@Locality:71@Town:31@Postcode:1
1@PostcodeFrom:9@Key:256@List:513";

Note that when using Nearest the GBGridE, GBGridN, and List fields also
specify the name of the field in your database table to use for that field in
pointed brackets, e.g.

GBGridE<GridE>:10@GBGridN<GridN>:10@List<Miles, Title>:10

{Refiner Options}
Refiner API users can also add a set of advanced cleaning options, if they
are required, to the end of the options portion of the field specification string,
enclosing them in pointed brackets, e.g. <0AS>.

The options supported are as follows: (Please see the main Refiner manual
for more detail regarding each of these options)

0 - Specifies the default cleaning mode where the address is fully cleaned

1 - Specifies that the postcode should be verified only

2 – Specifies that only full matches should be returned

3 – Uses Attach Mode only (fields are returned based on the postcode)

N – Use non-separated fields (Useful for databases where fields are not
seperated, e.g., the street and town are entered on the same line with no
comma etc. between them)

A – No Ambiguous Matches (do not return list of addresses to choose from
if the address cannot be uniquely matched)

S – No Suggested Matches (do not return a suggested match along with the
original address if the address cannot be matched but there is a possible
unique match)

AFD Common API
Desktop Integration Guide – January 2023

 - 23 -

U – Assume the Postcode is correct (this option allows less reliable matching
on the assumption that the postcode is correct if the address cannot
otherwise be verified. In Attach mode this allows a property and postcode
to be matched)

T – Give Ambiguous Matches in Preference to Street Level (if an address
cannot be uniquely matched to an individual property the original property
information is normally retained, this option gives the ambiguous addresses
to choose from instead).

P – Match PO Box Last (Some PO Box addresses contain some Street address
information too even though the address is meant for a PO Box. If you wish
Refiner to try and match it to a street address first, then select this option).

L – Retain Alias Localities (If the address is matched using an alias locality
this will be retained in the address – Alias Localities are not normally retained
as they are not required for the address to be deliverable).

O – Do not move data to Organisation (Normally Refiner will put additional
address data for street level only matches in the property field unless they
look like an Organisation or there is already a property. Specifying this
option ensures Refiner never returns such data in the Organisation field -
useful if you are not going to use the Organisation field returned).

W – Do not use the Default DPS (if an address is not matched to a full Delivery
Point Record, a default of 9Z is assigned which can still be used for printing
bar codes etc., if you do not wish this to be used then use this option)

F – Do not use Field Placement (By default if an address cannot be matched
Refiner attempts to format the address correctly on return, if you would
rather it was left “as-is” then use this option.

{International}
If you are also using International data then you will need to add the
following string onto the end of your field specification string
{Serial:Password:UserID}. (Including the curly brackets). Where:

Serial – This is the serial number you were given on signing up to the service.

AFD Common API
Desktop Integration Guide – January 2023

 - 24 -

Password – This is the password you were assigned on signing up to the
service.

UserID – This is optional and specifies a user id to identify this application.

Example VB Declaration for the Field Specification string matching the VB type previously given and using
some Refiner options:

Public Const afdFieldSpec =
"Address@<0AS>@Lookup:255@Name:120@Organisation:120@Property:120@Street:120@Locality:70@Town:30@Po
stcode:10@PostcodeFrom:8@Key:40@List:512"

Example C++ Declaration for the Field Specification string matching the C++ structure previously given and
using some Refiner options:

static char afdFieldSpec[2048] =
"Address@LX<0AS>@Lookup:256@Name:121@Organisation:121@Property:121@Street:121@Locality:71@Town:31@Post
code:11@PostcodeFrom:9@Key:256@List:513";

4.1.4. Function Type Constants

Next a set of constants are defined which specify the lookup and search
operations available. The DLL supports the following operations:

Constant Value Description
AFD_POSTCODE_LOOKUP 0 Carries out a standard

postcode (or zipcode)
lookup from the data
specified in the Lookup
field. (Not BankFinder)

AFD_POSTCODE_PROPERTY_LOOKUP 1 Carries out a lookup based
on a postcode or
combination of property
name/number and a
postcode. (Address
Management Only)

AFD_MULTIPLE_FASTFIND_LOOKUP 1 Like a FastFind lookup for
Nearest but where a
specified locality or town
matches multiple locations
the user is presented with a
list to choose from.
(Nearest Only)

AFD Common API
Desktop Integration Guide – January 2023

 - 25 -

AFD_FASTFIND_LOOKUP 2 Full fast-find functionality,
allowing either a postcode
or an address portion to be
entered to find the address.

AFD_SEARCH 3 Reverse search, set fields to
specify reverse search
criteria. (See Appendix A
for details of which fields
are searchable in which
products). Fields not
searchable will be ignored
if specified.

AFD_RETRIEVE_RECORD 4 Retrieves a previous record
from a lookup/search.
Useful when you add items
to a list box, using the List
field and then wish to
retrieve the item the user
clicks on. Set the Key field
to use this operation with
the value of the Key field
that was returned from the
original lookup/search for
the record you want.

AFD_ACCOUNT_VALIDATE 5 Used to validate a supplied
sortcode and account
number (BankFinder only)

AFD_CARD_VALIDATE 6 Used to validate a supplied
card number and optional
expiry date (BankFinder
only)

AFD_CLEAN 7 Used to clean an address
(requires a Refiner API
license)

AFD_GET_NEXT 32 Should be specified with
any of the lookup or search
operations for subsequent
calls to obtain the next
matching result
(END_OF_SEARCH,-6, will
be returned if there are no
further results to return).

AFD_LIST_BOX 64 Specify with any of the
lookup/search operations
if you wish the DLL to

AFD Common API
Desktop Integration Guide – January 2023

 - 26 -

display a listbox for you
rather than having to use
your own in the case of
multiple results. Calls to
AFD_GET_NEXT are not
needed in this case as the
API will only return the result
the user selects.

AFD_SHOW_ERROR 128 Set this option if you require
the DLL to display any error
message (e.g. if no results
are found) to the user itself.

Example VB Constant Declarations:

Public Const AFD_POSTCODE_LOOKUP = 0
Public Const AFD_POSTCODE_PROPERTY_LOOKUP = 1
Public Const AFD_MULTIPLE_FASTFIND_LOOKUP = 1
Public Const AFD_FASTFIND_LOOKUP = 2
Public Const AFD_SEARCH = 3
Public Const AFD_RETRIEVE_RECORD = 4
Public Const AFD_ACCOUNT_VALIDATE = 5
Public Const AFD_CARD_VALIDATE = 6
Public Const AFD_CLEAN = 7
Public Const AFD_GET_NEXT = 32
Public Const AFD_LIST_BOX = 64
Public Const AFD_SHOW_ERROR = 128

Example C++ Constant Declarations:

// Function Type Constants
#define AFD_POSTCODE_LOOKUP 0
#define AFD_POSTCODE_PROPERTY_LOOKUP 1
#define AFD_MULTIPLE_FASTFIND_LOOKUP 1
#define AFD_FASTFIND_LOOKUP 2
#define AFD_SEARCH 3
#define AFD_RETRIEVE_RECORD 4
#define AFD_ACCOUNT_VALIDATE 5
#define AFD_CARD_VALIDATE 6
#define AFD_CLEAN 7
#define AFD_GET_NEXT 32
#define AFD_LIST_BOX 64
#define AFD_SHOW_ERROR 128

4.1.5. Skip Constants – UK Address Management Only

For address management products skip constants are provided next which
can be added to the operation parameter for calls to the AFDData function
to skip records, for example to return the first record on a postcode only.

AFD Common API
Desktop Integration Guide – January 2023

 - 27 -

The available options are as follows:

Constant Value Description
AFD_NO_SKIP 0 Default – all matching records are

returned
AFD_ADDRESS_SKIP 512 Only the first record per address (e.g., first

listed resident) is returned. Only has any
effect in Names & Numbers.

AFD_POSTCODE_SKIP 1024 Only the first record per postcode is
returned.

AFD_SECTOR_SKIP 1536 Only the first record in each postcode
sector is returned. (A postcode sector is
the portion of the postcode before the
space plus the first digit after it, e.g., B11 1 is
a sector).

AFD_OUTCODE_SKIP 2048 Only the first record per Outcode is
returned. The Outcode is the portion of the
postcode before the space, e.g., B11.

AFD_POST_TOWN_SKIP 2560 Only the first record per Post Town, e.g.,
Birmingham is returned.

AFD_POSTCODE_AREA_SKIP 3072 Only the first record per Postcode Area is
returned. A Postcode Area is the letters at
the start of the postcode, e.g., B11 1AA is in
Postcode Area B, IM8 is in Postcode Area IM.

Example VB Constant Declarations:

Public Const AFD_NO_SKIP = 0
Public Const AFD_ADDRESS_SKIP = 512
Public Const AFD_POSTCODE_SKIP = 1024
Public Const AFD_SECTOR_SKIP = 1536
Public Const AFD_OUTCODE_SKIP = 2048
Public Const AFD_POST_TOWN_SKIP = 2560
Public Const AFD_POSTCODE_AREA_SKIP = 3072

Example C++ Constant Declarations:

// Function Type Constants
#define AFD_NO_SKIP 0
#define AFD_ADDRESS_SKIP 512
#define AFD_POSTCODE_SKIP 1024
#define AFD_SECTOR_SKIP 1536
#define AFD_OUTCODE_SKIP 2048
#define AFD_POST_TOWN_SKIP 2560
#define AFD_POSTCODE_AREA_SKIP 3072

AFD Common API
Desktop Integration Guide – January 2023

 - 28 -

4.1.6. Clearing System Constants – BankFinder Only

The clearing system constants allows you to restrict the results that come
back to those which are solely on the UK (BACS) Clearing System or the Irish
(IPSO Clearing System), or both systems. Obviously if you are only able to
clear through the UK clearing system you should specify this to return results
for the UK system only. This constant should be added to the operation
parameter for calls to the AFDData function.

The available options are as follows:

Constant Value Description
AFD_BOTH_CLEARINGS 0 Default – all matching records are returned
AFD_UK_CLEARING 512 Only records on the UK (BACS) Clearing

System are returned
AFD_IRISH_CLEARING 1024 Only records on the Irish (IPSO) Clearing

System are returned

Example VB Constant Declarations:

Public Const AFD_BOTH_CLEARINGS = 0
Public Const AFD_UK_CLEARING = 512
Public Const AFD_IRISH_CLEARING = 1024

Example C++ Constant Declarations:

// Function Type Constants
#define AFD_BOTH_CLEARINGS 0
#define AFD_UK_CLEARING 512
#define AFD_IRISH_CLEARING 1024

4.1.7. Success Code Constants

These specify the possible success codes returned from any API function:

Constant Value Description
AFD_RECORD_BREAK 0 The search/lookup has not completed but may take

some time and so is returning to give the user the
option to cancel a long search.

AFD_SUCCESS 1 The function was successful, and a matching record
has been returned.

AFD_SUCCESS_
NO_VALIDATION

2 This applies only to Bankfinder account number
validation and indicates that the function was
successful, and the account number should be
taken as valid. However, as account numbers on this

AFD Common API
Desktop Integration Guide – January 2023

 - 29 -

sortcode cannot be validated you may wish to
double check it is correct.

4.1.8. Error Code Constants

These specify the possible errors returned from any API function:

Constant Value Description
AFD_ ERROR_INVALID_FIELDSPEC -1 The field specification string

specified is invalid. This shouldn’t
be returned under normal
circumstances.

AFD_ ERROR_NO_RESULTS_FOUND -2 No records matching your lookup
or search criteria were found.

AFD_ERROR_INVALID_
... _RECORD_NUMBER

-3 The record number provided (e.g.,
when re-retrieving an item from a
list box) is invalid.

AFD_ERROR_OPENING_FILES -4 An error occurred attempting to
open the AFD data files. Check
they are correctly installed.

AFD_ERROR_FILE_READ -5 An error occurred reading the
data. Likely to be due to corrupt
data so software may need to be
re-installed.

AFD_ERROR_END_OF_SEARCH -6 End of Search (when the last result
has already been called off –
indicates there are no more
results to return).

AFD_DATA_LICENSE_ERROR -7 Indicates there is an error with the
product registration. Normally
due to it having expired. Run the
Welcome program to re-register
the software.

AFD_ERROR_CONFLICTING_
.. _SEARCH_PARAMETERS

-8 Occurs if you attempt to search
for a Name and Organisation at
the same time. Also occurs with
Postcode Plus if the UDPRN field is
searched for at the same time as
any other field.

AFD_USER_CANCELLED -99 Indicates that the user clicked the
cancel button if the DLL internal list
box was used.

AFD Common API
Desktop Integration Guide – January 2023

 - 30 -

The following fields apply to BankFinder validation operations only
AFD_ERROR_SORTCODE_NOT_FOUND -12 The sort code specified for an

account number validation does
not exist.

AFD_ERROR_INVALID_SORTCODE -13 The sortcode specified for an
account number validation is
invalid.

AFD_ERROR_INVALID_ACCOUNT_NUMBER -14 The account number specified for
an account number validation is
invalid.

AFD_ERROR_INVALID_ROLL_NUMBER -21 The sort code and account
number given are for a building
society account which also
requires a roll number for account
credits. No roll number has been
supplied or is incorrect for this
building society.

AFD_ERROR_INVALID_IBAN -22 The International Bank Account
Number provided is in an invalid
format

AFD_ERROR_UNRECOGNISED_COUNTRY -23 The IBAN provided contains a
country that is not recognised as
valid

AFD_ERROR_IBAN_MISMATCH -24 Both an IBAN and Account
Number was provided and these
details do not match.

AFD_ERROR_INVALID_EXPIRY -15 The expiry date specified for a
card validation is invalid.

AFD_ERROR_CARD_EXPIRED -16 The card has expired
AFD_ERROR_INVALID_CARD_NUMBER -18 The card number specified for a

card validation is invalid.
AFD_ERROR_VISA_ATM_ONLY -19 The card number specified is a

Visa card which can be used in an
ATM only.

AFD_ERROR_UNRECOGNISED_
.. _CARD_TYPE

-20 While the card number appears to
be a valid one, the card is not of
any of the known types and is
therefore unlikely to be
acceptable for payment.

Example VB Constant Declarations:

Public Const AFD_ERROR_INVALID_FIELDSPEC = -1
Public Const AFD_ERROR_NO_RESULTS_FOUND = -2
Public Const AFD_ERROR_INVALID_RECORD_NUMBER = -3
Public Const AFD_ERROR_OPENING_FILES = -4

AFD Common API
Desktop Integration Guide – January 2023

 - 31 -

Public Const AFD_ERROR_FILE_READ = -5
Public Const AFD_ERROR_END_OF_SEARCH = -6
Public Const AFD_ERROR_DATA_LICENSE_ERROR = -7
Public Const AFD_ERROR_CONFLICTING_SEARCH_PARAMETERS = -8
Public Const AFD_USER_CANCELLED = -99

Example C++ Constant Declarations:

#define AFD_ERROR_INVALID_FIELDSPEC -1
#define AFD_ERROR_NO_RESULTS_FOUND -2
#define AFD_ERROR_INVALID_RECORD_NUMBER -3
#define AFD_ERROR_OPENING_FILES -4
#define AFD_ERROR_FILE_READ -5
#define AFD_ERROR_END_OF_SEARCH -6
#define AFD_ERROR_DATA_LICENSE_ERROR -7
#define AFD_ERROR_CONFLICTING_SEARCH_PARAMETERS -8
#define AFD_USER_CANCELLED -99

4.1.9. Refiner Status Code Constants

Refiner clean operations return a cleaning constant >= 100 or <= -100 which
indicates the status of the cleaning operation. These constants are as
follows:

Constant Value Description
AFD_ REFINER_PAF_MATCH 100 Address verified from Postcode

and matches a record in PAF
identically.

AFD_REFINER_POSTCODE_MATCH 200 Address verified from the
Postcode and matches a record
in PAF with some correction.

AFD_REFINER_CHANGED_POSTCODE 201 Address verified from a postcode
which was substituted due to a
Royal Mail recoding and now
matches a record in PAF.

AFD_REFINER_ASSUME_POSTCODE_
CORRECT

202 Match was made with the Assume
Postcode Correct option enabled
only and the address could only
be verified on the assumption that
the postcode was correct.

AFD_REFINER_ASSUME_CHANGED_
POSTCODE_CORRECT

203 Match was made with the Assume
Postcode Correct option enabled
and the address could only be
verified on the assumption that
the postcode was correct after a
Royal Mail recoding change.

AFD Common API
Desktop Integration Guide – January 2023

 - 32 -

AFD_REFINER_ASSUME_POSTCODE_
ADDED_PROPERTY

204 Match was made with the Assume
Postcode Correct option enabled
and the address could only be
verified on the assumption that
the postcode was correct and the
property was added in.

AFD_REFINER_ASSUME_CHANGED_
POSTCODE_ADDED_PROPERTY

205 Match was made with the Assume
Postcode Correct option enabled
and the address could only be
verified on the assumption that
the postcode was correct after a
Royal Mail recoding change and
the property was added in.

AFD_REFINER_FULL_DPS_MATCH 300 Address verified to PAF with some
correction, looking wider than just
the specified Postcode.

AFD_REFINER_FULL_DPS_MATCH_NO_
ORG

301 Address verified to PAF with
ambiguous organisation which
was not in the original address so
has been omitted.

AFD_REFINER_FULL_DPS_MATCH_
LIMITED

302 Match was made with the Assume
Postcode Correct option enabled
and the Address was verified to
PAF to a more limited degree.

AFD_REFINER_STREET_MATCH 400 Address verified to Street Level, i.e.
the property was not on PAF, but a
unique match to the street was
identified on a single postcode.

AFD_REFINER_NO_MATCH_FOUND -101 No Match Found - Refiner has
been unable to match this record.

AFD_REFINER_AMBIGUOUS_POSTCODE -102 Ambiguous Postcode Match -
Refiner has matched this record
to Street Level but cannot
determine which is the correct
Postcode and so has presented
each of the possibilities.

AFD_REFINER_SUGGEST_RECORD -103 Suggested Match. Refiner has
given a possibility that this
address could match to as it is
unique but there was not enough
to be certain of a correct match.

AFD_REFINER_AMBIGUOUS_MATCH -104 Ambiguous Match. Refiner has
given several possibilities that this
address could match to.

AFD Common API
Desktop Integration Guide – January 2023

 - 33 -

AFD_REFINER_INTERNATIONAL_
ADDRESS

-105 This address was detected as
being an International Address
and therefore cannot be cleaned
as data is only present for
cleaning UK, Channel Isles, and
Isle of Man addresses.

AFD_REFINER_NO_RECORD_DATA -106 No record data was
supplied. Refiner cannot clean
this address as no address data
was given.

Example VB Constant Declarations:

Public Const AFD_REFINER_PAF_MATCH = 100
Public Const AFD_REFINER_POSTCODE_MATCH = 200
Public Const AFD_REFINER_CHANGED_POSTCODE = 201
Public Const AFD_REFINER_ASSUME_POSTCODE_CORRECT = 202
Public Const AFD_REFINER_ASSUME_CHANGED_POSTCODE_CORRECT = 203
Public Const AFD_REFINER_ASSUME_POSTCODE_ADDED_PROPERTY = 204
Public Const AFD_REFINER_ASSUME_CHANGED_POSTCODE_ADDED_PROPERTY = 205
Public Const AFD_REFINER_FULL_DPS_MATCH = 300
Public Const AFD_REFINER_FULL_DPS_MATCH_NO_ORG = 301
Public Const AFD_REFINER_FULL_DPS_MATCH_LIMITED = 302
Public Const AFD_REFINER_STREET_MATCH = 400
Public Const AFD_REFINER_NO_MATCH_FOUND = -101
Public Const AFD_REFINER_AMBIGUOUS_POSTCODE = -102
Public Const AFD_REFINER_SUGGEST_RECORD = -103
Public Const AFD_REFINER_AMBIGUOUS_MATCH = -104
Public Const AFD_REFINER_INTERNATIONAL_ADDRESS = -105
Public Const AFD_REFINER_NO_RECORD_DATA = -106

Example C++ Constant Declarations:

#define AFD_REFINER_PAF_MATCH 100
#define AFD_REFINER_POSTCODE_MATCH 200
#define AFD_REFINER_CHANGED_POSTCODE 201
#define AFD_REFINER_ASSUME_POSTCODE_CORRECT 202
#define AFD_REFINER_ASSUME_CHANGED_POSTCODE_CORRECT 203
#define AFD_REFINER_ASSUME_POSTCODE_ADDED_PROPERTY 204
#define AFD_REFINER_ASSUME_CHANGED_POSTCODE_ADDED_PROPERTY 205
#define AFD_REFINER_FULL_DPS_MATCH 300
#define AFD_REFINER_FULL_DPS_MATCH_NO_ORG 301
#define AFD_REFINER_FULL_DPS_MATCH_LIMITED 302
#define AFD_REFINER_STREET_MATCH 400
#define AFD_REFINER_NO_MATCH_FOUND -101
#define AFD_REFINER_AMBIGUOUS_POSTCODE -102
#define AFD_REFINER_SUGGEST_RECORD -103
#define AFD_REFINER_AMBIGUOUS_MATCH -104
#define AFD_REFINER_INTERNATIONAL_ADDRESS -105
#define AFD_REFINER_NO_RECORD_DATA -106

AFD Common API
Desktop Integration Guide – January 2023

 - 34 -

4.1.10. AFDErrorText Function

This is a helper function that the Wizard will generate, which will convert an
error code (return value less than zero) to a message which explains the
error. This makes it easy to simply use this function to obtain text to display
in the case of an error. Text is included for each of the error codes listed in
the Error Code Constants section above.

4.1.11. AFD RefinerCleaningText Function

This is a helper function that the Wizard will generate, which will convert a
return code from the Common API when using the AFD_CLEAN option to a
message which explains the error. This makes it easy to simply use this
function to obtain text to display in the case of an error. Text is included for
each of the error codes listed in the Refiner Status Code Constants section
above. Please note that this function is only useful if you are using Refiner
API functionality with the appropriate license.

4.1.12. Clear Function

The wizard also generates a helper function to clear the AFD Type or
Structure, which you should call prior to carrying out an operation using the
API. This is either called ClearAFDAddressData or ClearAFDBankData for
Address Management products and BankFinder respectively. The differing
names allow these to co-exist in the same module if desired when using
both products.

Note: This does not apply to C++ code as they include a clear function in the
structure declaration itself.

4.1.13. afdInitDLL

Where necessary, e.g., in C++ a function is also included which will load the
DLL and locate the AFDData function:

4.1.14. Differences with .NET

The API works in an identical way with .NET as it does with all other
development environments. However, the code generated for .NET includes
a wrapper function AFDData to convert the .NET structure to a string that can

AFD Common API
Desktop Integration Guide – January 2023

 - 35 -

be passed to the API. You should use the API Wizard for your environment to
see this function.

4.1.15. List Functions – Address Management Only

With Postcode Plus, Names & Numbers and TraceMaster products you can
obtain the alias localities for any address or postcode if required. These are
non-postally required localities held by Royal Mail which can or may be
included on an address if desired. An example of this would be including
Wimbledon for an address in London. You should note that these are stored
at postal sector level (e.g., SW19 1) and there are often multiple entries for an
address so a locality being returned does not mean it is necessarily the best
one for the particular address you are viewing.

For Names & Numbers and TraceMaster products only it is also possible to
obtain a list of possible values for most fields, e.g., all the Mailsort codes
present, business descriptions, etc. You can also specify the start value of
the field, e.g., return all surnames present starting with “Smith”.

When using International data, you can also use the List functions to obtain
a list of all available countries (names or ISO codes).

To use these functions an AFDListData structure should be declared
containing the following fields:

Field Name Lengt
h

Description

Lookup 255 In the case of retrieving an alias
locality this should be the
postcode or key of the address to
obtain the alias localities for.

In the case of Names & Numbers
or TraceMaster lists this should
either be blank to retrieve the full
list or contain the value you wish
entries to start with.

List 255 Each matching locality name or
list entry is returned, in turn, into
this field.

Product 40 Optional: Would indicate the
product used if desired.

AFD Common API
Desktop Integration Guide – January 2023

 - 36 -

An afdListFieldSpec string should also be declared and works as described
in section 4.1.3.

The constants you can use with this function to specify the list operation you
wish to perform are as follows:

Constant Value Description
AFD_LIST_ALIAS_LOCALITY 0 Returns all alias localities for the

sector that the specified postcode
or key resides in.

The following are applicable when using International data only:

AFD_LIST_COUNTRY_ISO 3 Will return the ISO codes of all
available countries.

AFD_LIST_COUNTRY 4 Will return the names of all
available countries.

The following are applicable to Names & Numbers and TraceMaster Products Only:
These all return a list of all entries of the data item specified in the data
Setting the lookup parameter will restrict matches to only those items starting with
the specified string.
AFD_LIST_FORENAME 10 Returns Forenames (first names).
AFD_LIST_SURNAME 11 Returns Surnames
AFD_LIST_ORGANISATION 12 Returns Organisations
AFD_LIST_PROPERTY 13 Returns Properties
AFD_LIST_STREET 14 Returns Streets
AFD_LIST_LOCALITY 15 Returns Localities
AFD_LIST_TOWN 16 Returns Postal Towns
AFD_LIST_COUNTY 17 Returns Counties (This includes

Postal, Traditional and
Administrative County names)

AFD_LIST_MAILSORT_CODE 18 Returns Mailsort codes
AFD_LIST_URBAN_RURAL_CODE 19 Returns Urban Rural Codes
AFD_LIST_URBAN_RURAL_NAME 20 Returns Urban Rural Names
AFD_LIST_WARD_CODE 21 Returns Ward Codes
AFD_LIST_WARD_NAME 22 Returns Ward Names
AFD_LIST_CONSTITUENCY 23 Returns Constituencies
AFD_LIST_EER_CODE 24 Returns EER Codes (European

Electoral Region Codes)
AFD_LIST_EER_NAME 25 Returns EER Names
AFD_LIST_AUTHORITY_CODE 26 Returns Local / Unitary Authority

Codes
AFD_LIST_AUTHORITY 27 Returns Authority Names

AFD Common API
Desktop Integration Guide – January 2023

 - 37 -

AFD_LIST_LEA_CODE 28 Returns LEA Codes (Local
Education Authority)

AFD_LIST_LEA_NAME 29 Returns LEA Names
AFD_LIST_TV_REGION 30 Returns TV Regions
AFD_LIST_NHS_CODE 31 Returns NHS Codes
AFD_LIST_NHS_NAME 512 Returns NHS Names
AFD_LIST_NHS_REGION_CODE 513 Returns NHS Region Codes
AFD_LIST_NHS_REGION_NAME 514 Returns NHS Region Names
AFD_LIST_PCT_CODE 515 Return CCG Codes
AFD_LIST_PCT_NAME 516 Return CCG Names
AFD_LIST_CENSATION_CODE 517 Returns Censation Codes
AFD_LIST_AFFLUENCE 518 Returns Censation Affluence

Codes with descriptions
AFD_LIST_LIFESTAGE 519 Returns Censation Lifestage

Codes with descriptions
AFD_LIST_ADDITIONAL_CENSUS_INFO 520 Returns Censation Additional

Information with descriptions.
AFD_LIST_HOUSEHOLD_COMPOSITION 521 Returns Household composition

codes with descriptions.
AFD_LIST_BUSINESS 522 Returns Business descriptions
AFD_LIST_SIZE 523 Returns Company Size catagories
AFD_LIST_SIC_CODE 524 Returns SIC Codes
AFD_LIST_COUNCIL_TAX_BAND 525 Returns Council Tax Bands
AFD_LIST_CONSTITUENCY_CODE 528 Returns Constituency Codes
AFD_LIST_SUB_COUNTRY_NAME 529 Returns Sub Country Names
AFD_LIST_DEVOLVED_CONSTITUENCY_C
ODE

531 Returns Devolved Constituency
Codes

AFD_LIST_DEVOLVED_CONSTITUENCY_N
AME

532 Returns Devolved Constituency
Names

Example VB Constant Declarations for List Functions:

Public Const AFD_LIST_ALIAS_LOCALITY = 0
Public Const AFD_LIST_COUNTRY_ISO = 3
Public Const AFD_LIST_COUNTRY = 4
Public Const AFD_LIST_FORENAME = 10
Public Const AFD_LIST_SURNAME = 11
Public Const AFD_LIST_ORGANISATION = 12
Public Const AFD_LIST_PROPERTY = 13
Public Const AFD_LIST_STREET = 14
Public Const AFD_LIST_LOCALITY = 15
Public Const AFD_LIST_TOWN = 16
Public Const AFD_LIST_COUNTY = 17
Public Const AFD_LIST_MAILSORT_CODE = 18
Public Const AFD_LIST_URBAN_RURAL_CODE = 19
Public Const AFD_LIST_URBAN_RURAL_NAME = 20
Public Const AFD_LIST_WARD_CODE = 21

AFD Common API
Desktop Integration Guide – January 2023

 - 38 -

Public Const AFD_LIST_WARD_NAME = 22
Public Const AFD_LIST_CONSTITUENCY = 23
Public Const AFD_LIST_EER_CODE = 24
Public Const AFD_LIST_EER_NAME = 25
Public Const AFD_LIST_AUTHORITY_CODE = 26
Public Const AFD_LIST_AUTHORITY = 27
Public Const AFD_LIST_LEA_CODE = 28
Public Const AFD_LIST_LEA_NAME = 29
Public Const AFD_LIST_TV_REGION = 30
Public Const AFD_LIST_NHS_CODE = 31
Public Const AFD_LIST_NHS_NAME = 512
Public Const AFD_LIST_NHS_REGION_CODE = 513
Public Const AFD_LIST_NHS_REGION_NAME = 514
Public Const AFD_LIST_PCT_CODE = 515
Public Const AFD_LIST_PCT_NAME = 516
Public Const AFD_LIST_CENSATION_CODE = 517
Public Const AFD_LIST_AFFLUENCE = 518
Public Const AFD_LIST_LIFESTAGE = 519
Public Const AFD_LIST_ADDITIONAL_CENSUS_INFO = 520
Public Const AFD_LIST_HOUSEHOLD_COMPOSITION = 521
Public Const AFD_LIST_BUSINESS = 522
Public Const AFD_LIST_SIZE = 523
Public Const AFD_LIST_SIC_CODE = 524
Public Const AFD_LIST_COUNCIL_TAX_BAND = 525

Example C++ Constant Declarations for List Functions:

// Function Type Constants
#define AFD_LIST_ALIAS_LOCALITY 0
#define AFD_LIST_COUNTRY_ISO 3
#define AFD_LIST_COUNTRY 4
#define AFD_LIST_FORENAME 10
#define AFD_LIST_SURNAME 11
#define AFD_LIST_ORGANISATION 12
#define AFD_LIST_PROPERTY 13
#define AFD_LIST_STREET 14
#define AFD_LIST_LOCALITY 15
#define AFD_LIST_TOWN 16
#define AFD_LIST_COUNTY 17
#define AFD_LIST_MAILSORT_CODE 18
#define AFD_LIST_URBAN_RURAL_CODE 19
#define AFD_LIST_URBAN_RURAL_NAME 20
#define AFD_LIST_WARD_CODE 21
#define AFD_LIST_WARD_NAME 22
#define AFD_LIST_CONSTITUENCY 23
#define AFD_LIST_EER_CODE 24
#define AFD_LIST_EER_NAME 25
#define AFD_LIST_AUTHORITY_CODE 26
#define AFD_LIST_AUTHORITY 27
#define AFD_LIST_LEA_CODE 28
#define AFD_LIST_LEA_NAME 29
#define AFD_LIST_TV_REGION 30
#define AFD_LIST_NHS_CODE 31
#define AFD_LIST_NHS_NAME 512
#define AFD_LIST_NHS_REGION_CODE 513
#define AFD_LIST_NHS_REGION_NAME 514
#define AFD_LIST_PCT_CODE 515

AFD Common API
Desktop Integration Guide – January 2023

 - 39 -

#define AFD_LIST_PCT_NAME 516
#define AFD_LIST_CENSATION_CODE 517
#define AFD_LIST_AFFLUENCE 518
#define AFD_LIST_LIFESTAGE 519
#define AFD_LIST_ADDITIONAL_CENSUS_INFO 520
#define AFD_LIST_HOUSEHOLD_COMPOSITION 521
#define AFD_LIST_BUSINESS 522
#define AFD_LIST_SIZE 523
#define AFD_LIST_SIC_CODE 524
#define AFD_LIST_COUNCIL_TAX_BAND 525

4.1.16. Utility Declarations – Address Management Only

These utility functions are not necessary for core address or bank validation
functionality but provide additional functionality that may be useful in your
application. For full details of what these functions can do please refer to
section 4.7 of this document.

4.1.17. String Utility Declarations – Depreciated and Unsupported

These are provided for compatibility with existing applications which may
depend on them but for new developments we would recommend you use
in-built functions which are included with most modern development
environments. For the String Utility functions an AFDStringData structure is
declared, containing the fields specified in Appendix E of this manual for
String functions. An afdStringFieldSpec is also declared and works in the
same way as the general field specification string documented earlier in this
section. The following operation constants are also defined which are used
to specify the string operation you wish to perform:

Constant Value Description
AFD_ STRING_SEARCH_REPLACE 0 All occurrences in the string

specified in the Lookup field of the
string specified in the Search field
are replaced with the string in the
Replace field.

AFD_STRING_SEARCH_REPLACE_CASE 1 This is the same as
AFD_STRING_SEARCH_REPLACE
but is case sensitive.

AFD_STRING_CAPITALISE 2 This corrects the capitalisation of
the string specified in the Lookup
field. For example, ‘commercial
STREET’ would become
‘Commercial Street’.

AFD Common API
Desktop Integration Guide – January 2023

 - 40 -

AFD_STRING_CLEAN_LINE 3 This cleans the string specified in
the Lookup field by removing
spurious characters that should
not be in an address line, e.g. a
trailing comma.

AFD_STRING_CHECK_POSTCODE 4 This checks if the string specified
in the Lookup field looks like a
postcode.

AFD_STRING_CLEAN_POSTCODE 5 This cleans the postcode
specified in the Lookup field to tidy
up the postcode specified.

AFD_STRING_ABBREVIATE_COUNTY 6 This provides the Royal Mail
Approved county abbreviation for
the county specified in the Lookup
field if one exists.

VB Declarations for String Utility Functions:

Public Type AFDStringData
 Lookup As String * 255
 Outcode As String * 4
 Incode As String * 3
 Search As String * 255
 Replace As String * 255
End Type
Public Const afdStringFieldSpec = "String@@Lookup:255@Outcode:4@Incode:3@Search:255@Replace:255"
Public Const AFD_STRING_SEARCH_REPLACE = 0
Public Const AFD_STRING_SEARCH_REPLACE_CASE = 1
Public Const AFD_STRING_CAPITALISE = 2
Public Const AFD_STRING_CLEAN_LINE = 3
Public Const AFD_STRING_CHECK_POSTCODE = 4
Public Const AFD_STRING_CLEAN_POSTCODE = 5
Public Const AFD_STRING_ABBREVIATE_COUNTY = 6

C++ Declarations for String Utility Declarations:

struct afdStringData {
 char Lookup[256];
 char Outcode[5];
 char Incode[4];
 char Search[256];
 char Replace[256];
 afdStringData(){ // constructor - zero the contents
 clear();
 }
 void clear(){
 memset(this,'\0',sizeof(*this));
 }
};
static char afdStringFieldSpec[2048] =
"String@LX@Lookup:256@Outcode:5@Incode:4@Search:256@Replace:256";
#define AFD_STRING_SEARCH_REPLACE 0
#define AFD_STRING_SEARCH_REPLACE_CASE 1

AFD Common API
Desktop Integration Guide – January 2023

 - 41 -

#define AFD_STRING_CAPITALISE 2
#define AFD_STRING_CLEAN_LINE 3
#define AFD_STRING_CHECK_POSTCODE 4
#define AFD_STRING_CLEAN_POSTCODE 5
#define AFD_STRING_ABBREVIATE_COUNTY 6

4.1.18. Grid Utility Declarations (UK Address Management Only)

For the Grid Utility functions an AFDGridData structure is declared, containing
the fields specified in Appendix E of this manual for Grid functions. An
afdGridFieldSpec is also declared and works in the same way as the general
field specification string documented earlier in this section. The following
operation constants are also defined which are used to specify the grid
operation you wish to perform:

Constant Value Description
AFD_GRID_CONVERT 512 Converts a GB or NI based grid reference,

or latitude and longitude value to all
other grid reference types and latitude
and longitude values. (This uses a 1m
resolution (6 digit). Using a constant of 0
rather than 512 uses 5-digit grids).

AFD_GRID_LOOKUP_LOCATION 513 Looks up a town, locality, or partial
postcode specified in the Lookup field
and provides an approximate grid
reference for the location if a match is
found (returns multiple results if there are
multiple matches for this location). (This
uses a 1m resolution (6 digit). Using a
constant of 1 rather than 513 uses 5-digit
grids).

AFD_GRID_DISTANCE 514 Calculates the distance between a pair
of grid references or latitude and
longitude values specified. (This uses a
1m resolution (6 digit). Using a constant of
2 rather than 514 uses 5-digit grids).

VB Declarations for Grid Utility Functions:

Public Type AFDGridData
 Lookup As String * 255
 GBGridE As String * 10
 GBGridN As String * 10
 NIGridE As String * 10
 NIGridN As String * 10
 Latitude As String * 10
 Longitude As String * 10
 TextualLatitude As String * 15

AFD Common API
Desktop Integration Guide – January 2023

 - 42 -

 TextualLongitude As String * 15
 Km As String * 6
 Miles As String * 6
 GBGridEFrom As String * 10
 GBGridNFrom As String * 10
 NIGridEFrom As String * 10
 NIGridNFrom As String * 10
 LatitudeFrom As String * 10
 LongitudeFrom As String * 10
 TextualLatitudeFrom As String * 15
 TextualLongitudeFrom As String * 15
End Type
Public Const afdGridFieldSpec =
"Grid@@Lookup:255@GBGridE:10@GBGridN:10@NIGridE:10@NIGridN:10@Latitude:10@Longitude:10@TextualLatitude:
15@TextualLongitude:15@Km:6@Miles:6@GBGridEFrom:10@GBGridNFrom:10@NIGridEFrom:10@NIGridNFrom:10@Lat
itudeFrom:10@LongitudeFrom:10@TextualLatitudeFrom:15@TextualLongitudeFrom:15"
Public Const AFD_GRID_CONVERT = 512
Public Const AFD_GRID_LOOKUP_LOCATION = 513
Public Const AFD_GRID_DISTANCE = 514

C++ Declarations for Grid Utility Declarations:

struct afdGridData {
 char Lookup[256];
 char GBGridE[11];
 char GBGridN[11];
 char NIGridE[11];
 char NIGridN[11];
 char Latitude[11];
 char Longitude[11];
 char TextualLatitude[16];
 char TextualLongitude[16];
 char Km[7];
 char Miles[7];
 char GBGridEFrom[11];
 char GBGridNFrom[11];
 char NIGridEFrom[11];
 char NIGridNFrom[11];
 char LatitudeFrom[11];
 char LongitudeFrom[11];
 char TextualLatitudeFrom[16];
 char TextualLongitudeFrom[16];
 afdGridData(){ // constructor - zero the contents
 clear();
 }
 void clear(){
 memset(this,'\0',sizeof(*this));
 }
};
static char afdGridFieldSpec[2048] =
"Grid@@Lookup:256@GBGridE:11@GBGridN:11@NIGridE:11@NIGridN:11@Latitude:11@Longitude:11@TextualLatitude:16@
TextualLongitude:16@Km:7@Miles:7@GBGridEFrom:11@GBGridNFrom:11@NIGridEFrom:11@NIGridNFrom:11@LatitudeFr
om:11@LongitudeFrom:11@TextualLatitudeFrom:16@TextualLongitudeFrom:16";
#define AFD_GRID_CONVERT 512
#define AFD_GRID_LOOKUP_LOCATION 513
#define AFD_GRID_DISTANCE 514

AFD Common API
Desktop Integration Guide – January 2023

 - 43 -

4.1.19. Email Utility Declarations

For the Email Utility function an AFDEmailData structure is declared,
containing the fields specified in Appendix E of this manual for Email
functions. An afdEmailFieldSpec is also declared and works in the same way
as the general field specification string documented earlier in this section.
The following operation constants are also defined which are used to specify
the level of email validation that you wish to perform:

Constant Value Description
AFD_EMAIL_FULL 0 Full email validation including live domain

lookup
AFD_EMAIL_FORMAT 2 Validate email addres format is correct only
AFD_EMAIL_TLD 3 Validate email format is correct and the top-

level domain exists
AFD_EMAIL_LOCAL 4 Validate email format, top level domain and for

well-known domains carry out additional
checks of the local portion of the address

VB Declarations for Email Utility Functions:

Public Type AFDEmailData
 Email As String * 255
End Type
Public Const afdEmailFieldSpec = "Email@@Email:255"
Public Const AFD_EMAIL_FULL = 0
Public Const AFD_EMAIL_FORMAT = 2
Public Const AFD_EMAIL_TLD = 3
Public Const AFD_EMAIL_LOCAL = 4

C++ Declarations for Email Utility Declarations:

struct afdEmailData {
 char Email[256];
 afdEmailData(){ // constructor - zero the contents
 clear();
 }
 void clear(){
 memset(this,'\0',sizeof(*this));
 }
};
static char afdEmailFieldSpec[2048] = "Email@@Email:256";
#define AFD_EMAIL_FULL = 0
#define AFD_EMAIL_FORMAT = 2
#define AFD_EMAIL_TLD = 3
#define AFD_EMAIL_LOCAL = 4

AFD Common API
Desktop Integration Guide – January 2023

 - 44 -

4.2. Lookup Function

The most commonly used function across our product range is the Lookup
function. By entering a single string, the user can find the results matching
there lookup criteria.

With our address management products three lookup types are provided
which you specify as the operation parameter in a call to AFDData:

Operation Constant Functionality
AFD_FASTFIND_LOOKUP This method is the most flexible, enabling

the user to lookup an address simply by
entering the postcode, or by using search
criteria such as “Commercial Street,
Birmingham” to quickly find matching
records.

AFD_POSTCODE_PROPERTY_LOOKUP This method allows the user to type in any
postcode (or zipcode) and, optionally,
include optional property information to
find a match. For example “304, B11 1AA”.
When full fastfind functionality is not
required using this operation can prevent
erroneous input causing long searches.

AFD_POSTCODE_LOOKUP The user can type in any postcode (or
zipcode), e.g. “B11 1AA” and obtain the
results for that postcode. Only full correct
postcodes are accepted. This is useful
when you only want a postcode lookup, for
example if you are looking up a list of
postcodes to obtain grid references.

Similarily with Nearest, three lookup types are also provided (although they
differ slightly due to the nature of the product):

Operation Constant Functionality
AFD_FASTFIND_LOOKUP This method is the most flexible, enabling

the user to find the nearest simply by
entering the postcode, or by entering a
locality or town name, or a partial
postcode.

AFD_MULTIPLE_FASTFIND_LOOKUP This is similar to AFD_FASTFIND_LOOKUP,
except that where a locality or town is
given which has multiple matches the user

AFD Common API
Desktop Integration Guide – January 2023

 - 45 -

will be presented with a list of locations to
choose from to then lookup to find the
Nearest.

AFD_POSTCODE_LOOKUP The user can type in any postcode, e.g. “B11
1AA” and obtain the Nearest records to that
postcode. Only full correct postcodes are
accepted.

With BankFinder the only option available is AFD_FASTFIND_LOOKUP which
allows you to find a bank using a sort code, postcode, or other criteria
quickly.

To carry out a lookup you will first need to declare an instance of the AFD
structure you have declared in your general declarations module or class
(see Section 4.1).

You will then need to set the Lookup parameter to the postcode or fast find
string that you wish to look up.

If you are using International data, you should also set the CountryISO or
Country field to specify the country to carry out the lookup for.

If you are using Nearest you should also set the MaxRecords parameter to
indicate the maximum number of records to return and the Miles or Km
parameter to specify the maximum distance to return. Using low values for
these options speeds up the lookup.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation constant you require (one of the 3 above)
3. The instance of the structure or type that you declared.

If you would prefer not to use your own list box in your application, you may
wish to add to the operation constant the AFD_LIST_BOX option. This causes
the DLL to display a list box for you returning the record that the user selects,
rather than returning all matching records to your application. This is only
suitable for desktop applications as it displays the list box on-screen.

AFD Common API
Desktop Integration Guide – January 2023

 - 46 -

Similarly adding AFD_SHOW_ERROR causes the DLL to display any error
message to the user itself.

Should you wish to use one of the skip options in Address Management, for
example returning the first record per sector only you can also add any of
the Skip constants listed in the declarations (see Section 4.1).

When using BankFinder you may wish to add the clearing system you wish
to restrict records to as well. Using AFD_UK_CLEARING restricts records to
those on the UK (BACS) clearing system only. Using AFD_IRISH_CLEARING
restricts records to those on the Irish (IPSO) clearing system only. If you can
only clear through the UK system, it is important to use the
AFD_UK_CLEARING constant.

The AFDData function will return a negative value (less than zero) in the case
of an error. Unless you have used the AFD_SHOW_ERROR option to ask the
DLL to present any error to the user, you should display an error for the user
before aborting the lookup. The AFDErrorText function will help you obtain a
string which can be useful for displaying to the user to describe the error.

In the case of Address Management products, the PostcodeFrom field of the
structure or type will be set if a postcode was looked up which has changed
following a Royal Mail recoding. The lookup will complete using the new
postcode (found in the Postcode field), however you may wish to display a
message notifying the user of this.

If the return value from the AFDData function is AFD_SUCCESS, then a
matching result has been returned and you can access the fields in the
structure or type instance supplied to obtain full details for it. Included in this
is a List property that can be used to provide a formatted item for adding to
a list box to allow the user to select the desired option if desired. The Key
property should also be stored as this allows quick retrieval of the record
should it be selected using the ListFetch method described in Section 4.4.

If you have specified the AFD_LIST_BOX option, then the user will have
selected the required item and you can access the fields in the supplied
structure or type instance and the lookup is complete.

AFD Common API
Desktop Integration Guide – January 2023

 - 47 -

Otherwise, you will have retrieved the first record which you can add to a list
box if desired. If the return value was AFD_RECORD_BREAK then no result has
yet been returned but the lookup is taking some time (would not occur with
a postcode or property, postcode lookup) and so the user is being given the
chance to cancel.

To retrieve the rest of the records you should call the AFDData function as
above repeatedly with the same operation code as before but adding the
AFD_GET_NEXT constant to it to obtain subsequent records. These can be
added to a list box as above or processed as required. You should call
AFDData in a lookup to retrieve these records allowing the user to cancel the
lookup should it take some time, or they realise they have entered
something incorrectly.

Example VB code for an Address Management Lookup:

 Dim details As AFDAddressData
 Dim retVal As Long
 Static running As Boolean

 ' Prevent corruption of list box from button being clicked twice
 If running Then Exit Sub
 running = True

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Reset Cancel flag
 cancelFlag = False

 ' Set the lookup
 details.Lookup = txtLookup.Text ' Change txtLookup to your lookup entry textbox

 ' Carry out the lookup (no need to alter the line below, unless you want to add a sector skip option - see
constants)
 retVal = AFDData(afdFieldSpec, AFD_FASTFIND_LOOKUP + AFD_SECTOR_SKIP, details)

 ' Abort with Message if error or user cancelled
 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 running = False
 Exit Sub
 End If

 ' Display any changed postcode if applicable
 If Trim(details.PostcodeFrom) <> "" Then
 MsgBox "Postcode has changed from " + Trim(details.PostcodeFrom) + " to " + Trim(details.Postcode)

AFD Common API
Desktop Integration Guide – January 2023

 - 48 -

 End If

 ' Now add matching records to the list box
 Do While retVal >= 0
 If retVal <> AFD_RECORD_BREAK Then
 ' Add the item to the list box with hidden key at the end
 .AddItem details.List + details.Key
 End If
 ' Give user the chance to cancel and allow list box to update
 DoEvents
 ' Check if user cancelled
 If cancelFlag Then
 MsgBox "Lookup Cancelled"
 running = False
 Exit Sub
 End If
 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_FASTFIND_LOOKUP, details)
 Loop

 ' Check results have been returned
 If .ListCount = 0 Then
 MsgBox "No Results Found"
 Else
 .ListIndex = 0 ' Select First item in the list
 End If

 End With

 running = False

Example C++ Code For an Address Management Lookup (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 static bool running = false;
 afdAddressData details;
 char listItem[2055];
 char msgTxt[255];
 long retVal;
 CListBox* listBox;
 MSG msg;

 // Check if we are already running to prevent crossing over items in the listbox
 if (running) return;
 running = true;

 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Replace m_lstResult with the name given to a variable assigned to your list box control for the results
 listBox = &m_lstResult;

 // Clear out any existing items in the list
 listBox->ResetContent();

AFD Common API
Desktop Integration Guide – January 2023

 - 49 -

 // Reset Cancel flag
 cancelFlag = false;

 // Update Data so we can read the lookup variable
 UpdateData(TRUE);

 // Set the lookup
 strcpy(details.Lookup, m_txtLookup); // Change this to your lookup entry textbox value variable

 // Carry out the lookup (no need to alter the line below, unless you want to add a sector skip option - see
constants)
 retVal = (afdData)(afdFieldSpec, AFD_FASTFIND_LOOKUP, (char*)&details);

 // Abort with Message if error or user cancelled
 if (retVal < 0) {
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);
 running = false;
 return;
 }

 // Display any changed postcode if applicable
 if (details.PostcodeFrom[0] != '\0') {
 strcpy(msgTxt, "Postcode has changed from ");
 strcat(msgTxt, details.PostcodeFrom);
 strcat(msgTxt, " to ");
 strcat(msgTxt, details.Postcode);
 MessageBox(msgTxt, "Changed Postcode", 0);
 }

 // Now add matching records to the list box
 while (retVal >= 0) {
 if (retVal != AFD_RECORD_BREAK) {
 // make up list item with hidden key at the end
 strncpy(listItem, details.List, sizeof(details.List));
 strncpy(listItem + sizeof(details.List), details.Key, sizeof(details.Key));
 listItem[sizeof(details.List) + sizeof(details.Key)] = '\0';
 // Add the item to the list box
 listBox->AddString(listItem);
 }
 // Give user the chance to cancel and allow list box to update
 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 // Check if user cancelled
 if (cancelFlag) {
 MessageBox("Search Cancelled", "Cancelled", 0);
 return;
 }
 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_FASTFIND_LOOKUP, (char*)&details);
 }

 // Check results have been returned
 if (listBox->GetCount() == 0)
 MessageBox("No Results Found", "Error", 0);

AFD Common API
Desktop Integration Guide – January 2023

 - 50 -

 else {
 listBox->SetCurSel(0); // Select First item in the list

 OnSelchangeLstResult(); // Set this to your list change method to simulate selecting the first list item

 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

 running = false;

4.3. Search Function

The search function allows records to be located by searching using specific
fields rather than a general lookup string. It allows any of the Fields to be
searched that are specified as being searchable for the AFD product that
you are using in Appendix A (for Address Management products) or
Appendix B (for BankFinder). All fields in your database are searchable in
the case of Nearest.

To carry out a search you will first need to declare an instance of the AFD
structure you have declared in your general declarations module or class
(see Section 4.1).

You will then need to set the fields that you wish to search on to the criteria
that you wish to use. Note that if you specify a field that is not searchable in
the product that you are using it will be ignored.

If you are using International data, you should also set the CountryISO or
Country field to specify the country to carry out the lookup for.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation code (AFD_SEARCH constant)
3. The instance of the structure or type that you declared.

If you would prefer not to use your own list box in your application, you may
wish to add to the operation constant the AFD_LIST_BOX option. This causes
the DLL to display a list box for you returning the record that the user selects,

AFD Common API
Desktop Integration Guide – January 2023

 - 51 -

rather than returning all matching records to your application. This is only
suitable for desktop applications as it displays the list box on-screen.
Similarly adding AFD_SHOW_ERROR causes the DLL to display any error
message to the user itself.

Should you wish to use one of the skip options in Address Management, for
example returning the first record per sector only you can also add any of
the Skip constants listed in the declarations (see Section 4.1).

When using BankFinder you may wish to add the clearing system you wish
to restrict records to as well. Using AFD_UK_CLEARING restricts records to
those on the UK (BACS) clearing system only. Using AFD_IRISH_CLEARING
restricts records to those on the Irish (IPSO) clearing system only. If you can
only clear through the UK system, it is important to use the
AFD_UK_CLEARING constant.

The AFDData function will return a negative value (less than zero) in the case
of an error. Unless you have used the AFD_SHOW_ERROR option to ask the
DLL to present any error to the user, you should display an error for the user
before aborting the lookup. The AFDErrorText function will help you obtain a
string which can be useful for displaying to the user to describe the error.

If the return value from the AFDData function is AFD_SUCCESS, then a
matching result has been returned and you can access the fields in the
structure or type instance supplied to obtain full details for it. Included in this
is a List property that can be used to provide a formatted item for adding to
a list box to allow the user to select the desired option if desired. The Key
property should also be stored as this allows quick retrieval of the record
should it be selected using the ListFetch method described in Section 4.4.

If you have used the M and T options in the field specification to return all
records at once from the API, then you will have all matching records in the
array you specified so the search is complete. If you have specified the
AFD_LIST_BOX option, then the user will have selected the required item and
so you can access the fields in the supplied structure or type instance and
the search is complete.

AFD Common API
Desktop Integration Guide – January 2023

 - 52 -

Otherwise, you will have retrieved the first record which you can add to a list
box if desired. If the return value was AFD_RECORD_BREAK then no result has
yet been returned but the search is taking some time (would not occur with
a postcode or property, postcode lookup) and so the user is being given the
chance to cancel.

To retrieve the rest of the records you should call the AFDData function as
above repeatedly with the same operation code as before but adding the
AFD_GET_NEXT constant to it to obtain subsequent records. These can be
added to a list box as above or processed as required. You should call
AFDData in a lookup to retrieve these records allowing the user to cancel the
lookup should it take some time, or they realise they have entered
something incorrectly.

Example VB code for an Address Management Search:

 Dim details As AFDAddressData
 Dim retVal As Long

 Static running As Boolean

 ' Prevent corruption of list box from button being clicked twice
 If running Then Exit Sub
 running = True

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Reset Cancel flag
 cancelFlag = False

 ' Clear Structure
 ClearAFDAddressData details

 ' Set the fields you wish to search on (look at the other properties of the structure)
 details.Organisation = txtSearchOrganisation.Text
 details.Property = txtSearchProperty.Text
 details.Street = txtSearchStreet.Text
 details.Locality = txtSearchLocality.Text
 details.Town = txtSearchTown.Text
 details.Postcode = txtSearchPostcode.Text

 ' Carry out the search (no need to alter the line below, unless you want to add a sector skip option - see
constants)
 retVal = AFDData(afdFieldSpec, AFD_SEARCH + AFD_SECTOR_SKIP, details)

 ' Abort with Message if error or user cancelled

AFD Common API
Desktop Integration Guide – January 2023

 - 53 -

 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 running = False
 Exit Sub
 End If

 ' Now add matching records to the list box
 Do While retVal >= 0
 If retVal <> AFD_RECORD_BREAK Then
 ' Add the item to the list box with hidden key at the end
 .AddItem details.List + details.Key
 End If
 DoEvents
 If cancelFlag Then
 MsgBox "Search Cancelled"
 running = False
 Exit Sub
 End If
 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_SEARCH, details)
 Loop

 ' Check results have been returned
 If .ListCount = 0 Then
 MsgBox "No Results Found"
 Else
 .ListIndex = 0 ' Select First item in the list
 End If

 End With

 running = False

Example C++ Code For an Address Management Search (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 static bool running = false;
 afdAddressData details;
 char listItem[2055];
 char msgTxt[255];
 long retVal;
 CListBox* listBox;
 MSG msg;

 // Check if we are already running to prevent crossing over items in the listbox
 if (running) return;
 running = true;

 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Replace m_lstResult with the name given to a variable assigned to your list box control for the results

AFD Common API
Desktop Integration Guide – January 2023

 - 54 -

 listBox = &m_lstResult;

 // Clear out any existing items in the list
 listBox->ResetContent();

 // Reset Cancel flag
 cancelFlag = false;

 // Update Data so we can read the search variables
 UpdateData(TRUE);

 // Set the search parameters (look at the other properties of the structure)
 strcpy(details.Organisation, m_txtSearchOrganisation);
 strcpy(details.Property, m_txtSearchProperty);
 strcpy(details.Street, m_txtSearchStreet);
 strcpy(details.Locality, m_txtSearchLocality);
 strcpy(details.Town, m_txtSearchTown);
 strcpy(details.Postcode, m_txtSearchPostcode);

 // Carry out the search (no need to alter the line below, unless you want to add a sector skip option - see
constants)
 retVal = (afdData)(afdFieldSpec, AFD_SEARCH, (char*)&details);

 // Abort with Message if error or user cancelled
 if (retVal < 0) {
 if (retVal != 99) { // User Cancelled
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);
 return;
 }
 running = false;
 return;
 }

 // Now add matching records to the list box
 while (retVal >= 0) {
 if (retVal != AFD_RECORD_BREAK) {
 // make up list item with hidden key at the end
 strncpy(listItem, details.List, sizeof(details.List));
 strncpy(listItem + sizeof(details.List), details.Key, sizeof(details.Key));
 listItem[sizeof(details.List) + sizeof(details.Key)] = '\0';
 // Add the item to the list box
 listBox->AddString(listItem);
 }
 // Give user the chance to cancel and allow list box to update
 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 // Check if user cancelled
 if (cancelFlag) {
 MessageBox("Search Cancelled", "Cancelled", 0);
 return;
 }
 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_SEARCH, (char*)&details);
 }

AFD Common API
Desktop Integration Guide – January 2023

 - 55 -

 // Check results have been returned
 if (listBox->GetCount() == 0)
 MessageBox("No Results Found", "Error", 0);
 else {
 listBox->SetCurSel(0); // Select First item in the list

 OnSelchangeLstResult(); // Set this to your list change method to simulate selecting the first list item

 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

 running = false;

4.4. List Fetch Function

Unless you are using the DLL’s internal list box (i.e., specified the
AFD_LIST_BOX constant at the time of your lookup or search) you may well
have added each of the results from a lookup or search to a list box from
which the user will select the required result. To retrieve the record, they
select you should use the Key Field which will have been returned with each
result, and which you should have stored with the list items.

To fetch the record, you will first need to declare an instance of the AFD
structure you have declared in your general declarations module or class
(see Section 4.1). You should then set the Key Field to the value returned for
the list item the user has selected.

If you are using International data, you should also set the CountryISO or
Country field to specify the country to carry out the lookup for.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation code (AFD_RETRIEVE_RECORD constant)
3. The instance of the structure or type that you declared.

The AFDData function will return a negative value (less than zero) in the case
of an error. It is unlikely that an error will occur at this stage, unless your key
was in some way corrupted, but for completeness you can use the

AFD Common API
Desktop Integration Guide – January 2023

 - 56 -

AFDErrorText function to help you obtain a string which can be useful for
displaying to the user to describe the error.

You will now have the requested record and can use any of the fields in the
structure to display or otherwise process the record details as desired.

You should note that with Nearest and the Multiple Fastfind Lookup operation
if a location is returned you will obtain a Key starting “LOC:” followed by a
grid reference. This should be looked up as a new lookup to get the Nearest
results rather than retrieving a record.

Example VB code to fetch an item selected in the list for Address Management products:

 Dim details As AFDAddressData
 Dim pos As Long, retVal As Long

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Check a valid item is selected
 If .ListIndex = -1 Then
 MsgBox "No Item Selected"
 Exit Sub
 End If

 ' Set DLL parameters to retrieve the selected record
 details.Key = Mid(lstResult, 513) ' Replace lstResult with the name of your list box for the results

 ' Finished with the list box
 End With

 ' Carry out the lookup (no need to alter the line below, unless you want to add a sector skip option - see
constants)
 retVal = AFDData(afdFieldSpec, AFD_RETRIEVE_RECORD, details)

 ' Abort with Message if error or user cancelled
 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 Exit Sub
 End If

 ' Now Assign required fields to your application
 ' These are any of the members of the details. type (Use Trim to remove whitespace)
 txtName.Text = Trim(details.Name)
 txtOrganisation.Text = Trim(details.Organisation)
 txtProperty.Text = Trim(details.Property)
 txtStreet.Text = Trim(details.Street)
 txtLocality.Text = Trim(details.Locality)
 txtTown.Text = Trim(details.Town)
 txtPostcode.Text = Trim(details.Postcode)

AFD Common API
Desktop Integration Guide – January 2023

 - 57 -

Example C++ code to fetch an item selected in the list for Address Management products (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 afdAddressData details;
 bool foundSel = false;
 long retVal;
 CListBox* listBox;
 char lstStr[2055];
 char msgTxt[255];

 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Replace m_lstResult with the name given to a variable assigned to your list box control for the results
 listBox = &m_lstResult;

 // Set DLL parameters to retrieve the selected record
 listBox->GetText(listBox->GetCurSel(), lstStr);
 strncpy(details.Key, lstStr + sizeof(details.List), sizeof(details.Key));

 // Carry out the lookup (no need to alter the line below, unless you want to add a sector skip option - see
constants)
 retVal = (afdData)(afdFieldSpec, AFD_RETRIEVE_RECORD, (char*)&details);

 // Abort with Message if error
 if (retVal < 0) {
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);
 return;
 }

 // Now Assign required fields to your application
 // These are any of the members of the details. structure
 m_txtName = details.Name;
 m_txtOrganisation = details.Organisation;
 m_txtProperty = details.Property;
 m_txtStreet = details.Street;
 m_txtLocality = details.Locality;
 m_txtTown = details.Town;
 m_txtPostcode = details.Postcode;
 // Update Fields

 UpdateData(FALSE);

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

AFD Common API
Desktop Integration Guide – January 2023

 - 58 -

4.5. Account Number Validation – BankFinder Only

This function provides the ability to validate a sort code and account
number. This checks that the account number is valid for the branch of the
bank which the sortcode belongs to. This does not guarantee that the
account number exists, or sufficient funds exist for any transaction, but
greatly cuts down on errors due to incorrectly entered numbers. The
function will also translate any non-standard account numbers (e.g., a 10-
digit account number).

To carry out a validation, you will first need to declare an instance of the
AFDBankData structure you have declared in your general declarations
module or class (see Section 4.1). You should then set the SortCode and
AccountNumber Fields to the sort code and account number that you wish
to validate (or instead the IBAN if validating an account number in that
International standardised format). Optionally with Building Society credits
you may also require a Roll Number.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation code (AFD_ACCOUNT_VALIDATE constant)
3. The instance of the structure or type that you declared.

If you would prefer the DLL to display any error message that may occur to
the user, rather than having to display this yourself, you should add the
AFD_SHOW_ERROR constant to the operation parameter. This is only
suitable for desktop applications as it displays any error message on-
screen.

You may also need to add the clearing system you wish to restrict records
to as well. Using AFD_UK_CLEARING restricts records to those on the UK
(BACS) clearing system only. Using AFD_IRISH_CLEARING restricts records to
those on the Irish (IPSO) clearing system only. If you can only clear through
the UK system it is important to use the AFD_UK_CLEARING constant.

The AFDData function will return a negative value (less than zero) in the case
of an error. Unless you have used the AFD_SHOW_ERROR option to ask the

AFD Common API
Desktop Integration Guide – January 2023

 - 59 -

DLL to present any error to the user, you should display an error for the user
before aborting the lookup. The AFDErrorText function will help you obtain a
string which can be useful for displaying to the user to describe the error.

Otherwise, the account number is valid, and you should use the SortCode,
AccountNumber and TypeOfAccount fields returned in the supplied type or
structure instance to process the account number (and optionally roll
number with some building societies) as they may be updated should
account number translation have been necessary.

If the return value is AFD_SUCCESS then the account number has been
validated, if the return value is AFD_SUCCESS_NO_VALIDATION then account
numbers on this sortcode cannot be validated and so the number should
still be treated as valid. This return code is provided so you can carry out an
additional check on the account number, e.g., asking a customer on the
phone to repeat it, checking it has been entered from a paper form correctly
etc. if you wish to do so.

If you are processing account numbers on both clearing systems and wish
to check which one the branch at which the account number that was
entered resides on, you can do this by checking the value of the
ClearingSystem field:

Clearing System Field
Value

Meaning

United Kingdom
(BACS)

The branch at which this account is held is on the UK
clearing system

Ireland (IPSO) The branch at which this account is held is on the Irish
Payment Services Organisation Clearing System

Both UK and Irish The branch at which this account is held is on both the UK
and Irish clearing systems. The actual account may only
clear through one of these systems but it is not possible to
determine which one so you should clarify that with the
customer.

Should you also wish to check the branch details match those that the
customer has supplied, check the transaction types allowed at this branch,
or obtain the address to use for this branch (may not be the branch physical
location) then you can carry out a lookup for the sortcode (see Section 4.1)
to obtain the branch information.

AFD Common API
Desktop Integration Guide – January 2023

 - 60 -

Example VB code to validate an account number:

 Dim details As AFDBankData
 Dim retVal As Long

 ' Set the Sort Code and Account Number
 details.SortCode = txtValidateSortcode.Text ' Change txtValidateSortCode to your sortcode entry textbox
 details.AccountNumber = txtValidateAccountNo.Text ' Change txtValidateAccountNo to your account number
entry textbox

 ' Carry out the validation (you can change the AFD_BOTH_CLEARINGS option to AFD_UK_CLEARING or
AFD_IRISH_CLEARING as desired)
 retVal = AFDData(afdBankFieldSpec, AFD_ACCOUNT_VALIDATE + AFD_BOTH_CLEARINGS, details)

 ' Abort with Message if error
 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 Exit Sub
 End If

 ' Display validation result - with details to submit for payment - note non-standard account number's will be
translated
 MsgBox "Account Number Valid: " + vbCrLf + vbCrLf + "Sortcode: " + Trim(details.SortCode) + vbCrLf + "Account
Number: " + Trim(details.AccountNumber) + vbCrLf + "Type of Account Code: " + Trim(details.TypeOfAccount) +
vbCrLf + "Clearing System: " + Trim(details.ClearingSystem)

Example C++ code to validate an account number (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 afdBankData details;
 char msgTxt[255];
 long retVal;
 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Update Data so we can read the sortcode and account number variables
 UpdateData(TRUE);

 // Set the Sort Code and Account Number
 strcpy(details.SortCode, m_txtValidateSortcode); // Change this to your sort code textbox value variable
 strcpy(details.AccountNumber, m_txtValidateAccountNo); // Change this to your account number textbox
value variable

 // Carry out the validation (you can change the AFD_BOTH_CLEARINGS option to AFD_UK_CLEARING or
AFD_IRISH_CLEARING as desired)
 retVal = (afdData)(afdBankFieldSpec, AFD_ACCOUNT_VALIDATE + AFD_BOTH_CLEARINGS, (char*)&details);

 // Abort with Message if error or user cancelled
 if (retVal < 0) {
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);

AFD Common API
Desktop Integration Guide – January 2023

 - 61 -

 return;
 }

 // Display validation result - with details to submit for payment - note non-standard account number's will be
translated
 strcpy(msgTxt, "Account Number Valid:\n\nSortcode: ");
 strcat(msgTxt, details.SortCode);
 strcat(msgTxt, "\nAccount Number: ");
 strcat(msgTxt, details.AccountNumber);
 strcat(msgTxt, "\nType of Account Code: ");
 strcat(msgTxt, details.TypeOfAccount);
 strcat(msgTxt, "\nClearing System: ");
 strcat(msgTxt, details.ClearingSystem);
 MessageBox(msgTxt, "Validation Successful", 0);

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

4.6. Card Number Validation – BankFinder Only

This function provides the ability to validate a card number, and optionally
check that an expiry date indicates that the card is in-date. This checks that
the card number is a valid one for the type of card and can indicate the card
type. This does not guarantee that the card exists or that a transaction will
be authorized, but greatly cuts down on errors due to incorrectly entered
numbers.

To carry out a validation, you will first need to declare an instance of the
AFDBankData structure you have declared in your general declarations
module or class (see Section 4.1). You should then set the CardNumber and,
if you wish, the ExpiryDate Fields for the card that you wish to validate.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation code (AFD_CARD_VALIDATE constant)
3. The instance of the structure or type that you declared.

If you would prefer the DLL to display any error message that may occur to
the user, rather than having to display this yourself, you should add the
AFD_SHOW_ERROR constant to the operation parameter. This is only
suitable for desktop applications as it displays any error message on-
screen.

AFD Common API
Desktop Integration Guide – January 2023

 - 62 -

The AFDData function will return a negative value (less than zero) in the case
of an error. Unless you have used the AFD_SHOW_ERROR option to ask the
DLL to present any error to the user, you should display an error for the user
before aborting the lookup. The AFDErrorText function will help you obtain a
string which can be useful for displaying to the user to describe the error.

Otherwise, the card number is valid. If you wish to determine the card type,
the CardType field will hold this information.

Example VB code to validate a card number:

 Dim details As AFDBankData
 Dim retVal As Long

 ' Set the Card Number and Expiry Date (Optional)
 details.CardNumber = txtValidateCardNo.Text ' Change txtValidateCardNo to your card number entry textbox
 details.ExpiryDate = txtValidateExpiry.Text ' Change txtValidateExpiry to your expiry date entry textbox

 ' Carry out the validation (you can change the AFD_BOTH_CLEARINGS option to AFD_UK_CLEARING or
AFD_IRISH_CLEARING as desired)
 retVal = AFDData(afdBankFieldSpec, AFD_CARD_VALIDATE, details)

 ' Abort with Message if error
 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 Exit Sub
 End If

 ' Display validation result
 MsgBox "Card Valid: " + Trim(details.CardType)

Example C++ code to validate a card number (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 afdBankData details;
 char msgTxt[255];
 long retVal;
 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Update Data so we can read the card number and expiry date variables
 UpdateData(TRUE);

 // Set the Card Number and Expiry date (Optional)
 strcpy(details.CardNumber, m_txtValidateCardNo); // Change this to your card number textbox value variable
 strcpy(details.ExpiryDate, m_txtValidateExpiry); // Change this to your expiry date textbox value variable

AFD Common API
Desktop Integration Guide – January 2023

 - 63 -

 // Carry out the validation (no need to alter the line below)
 retVal = (afdData)(afdBankFieldSpec, AFD_CARD_VALIDATE, (char*)&details);

 // Abort with Message if error or user cancelled
 if (retVal < 0) {
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);
 return;
 }

 // Display validation result
 strcpy(msgTxt, "Card Valid: ");
 strcat(msgTxt, details.CardType);
 MessageBox(msgTxt, "Validation Successful", 0);

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

4.7. List Functions – Address Management Only

With Postcode Plus, Names & Numbers and TraceMaster products you can
use the list functions to obtain a list of alias localities for the postcode sector
that a postcode or result is contained in. These are non-postally required
localities held by Royal Mail which can or may be included on an address if
desired. An example of this would be including Wimbledon for an address
in London. You should note that these are stored at postal sector level (e.g.,
SW19 1) and there are often multiple entries for an address so a locality being
returned does not mean it is necessarily the best one for the particular
address you are viewing.

For Names & Numbers and TraceMaster products only it is also possible to
obtain a list of possible values for most fields, e.g., all the Mailsort codes
present, business descriptions, etc. You can also specify the start value of
the field, e.g. return all surnames present starting with “Smith”.

When using International data, you can also use the List functions to obtain
a list of all available countries (names or ISO codes).

To carry out a list operation, you first need to declare an instance of the
AFDListData structure you have declared in your general declarations
module or class (see Section 4.1). For an alias locality lookup, you should
then set the Lookup field to the postcode or record key that you wish to
lookup the alias localities for. When retrieving field lists from Names &

AFD Common API
Desktop Integration Guide – January 2023

 - 64 -

Numbers you can set this to specify that only entries starting with your
specified string are returned (this is essential for long lists like surname to be
useful but is generally not so useful with shorter lists like Household
Composition).

The operation parameter passed to the AFDData function determines the
List function carried out:

Constant Description
AFD_LIST_ALIAS_LOCALITY Returns all alias localities for the sector

that the specified postcode or key resides
in.

The following are applicable when using International data only:
AFD_LIST_COUNTRY_ISO Will return the ISO codes of all available

countries.
AFD_LIST_COUNTRY Will return the names of all available

countries.
The following are applicable to Names & Numbers and TraceMaster Products Only:
These all return a list of all entries of the data item specified in the data
Setting the lookup parameter will restrict matches to only those items starting with
the specified string.
AFD_LIST_FORENAME Returns Forenames (first names).
AFD_LIST_SURNAME Returns Surnames
AFD_LIST_ORGANISATION Returns Organisations
AFD_LIST_PROPERTY Returns Properties
AFD_LIST_STREET Returns Streets
AFD_LIST_LOCALITY Returns Localities
AFD_LIST_TOWN Returns Postal Towns
AFD_LIST_COUNTY Returns Counties (This includes Postal,

Traditional and Administrative County
names)

AFD_LIST_MAILSORT_CODE Returns Mailsort codes
AFD_LIST_URBAN_RURAL_CODE Returns Urban Rural Codes
AFD_LIST_URBAN_RURAL_NAME Returns Urban Rural Names
AFD_LIST_WARD_CODE Returns Ward Codes
AFD_LIST_WARD_NAME Returns Ward Names
AFD_LIST_CONSTITUENCY Returns Constituencies
AFD_LIST_EER_CODE Returns EER Codes (European Electoral

Region Codes)
AFD_LIST_EER_NAME Returns EER Names
AFD_LIST_AUTHORITY_CODE Returns Local / Unitary Authority Codes
AFD_LIST_AUTHORITY Returns Authority Names

AFD Common API
Desktop Integration Guide – January 2023

 - 65 -

AFD_LIST_LEA_CODE Returns LEA Codes (Local Education
Authority)

AFD_LIST_LEA_NAME Returns LEA Names
AFD_LIST_TV_REGION Returns TV Regions
AFD_LIST_NHS_CODE Returns NHS Codes
AFD_LIST_NHS_NAME Returns NHS Names
AFD_LIST_NHS_REGION_CODE Returns NHS Region Codes
AFD_LIST_NHS_REGION_NAME Returns NHS Region Names
AFD_LIST_PCT_CODE Return PCT Codes
AFD_LIST_PCT_NAME Return PCT Names
AFD_LIST_CENSATION_CODE Returns Censation Codes
AFD_LIST_AFFLUENCE Returns Censation Affluence Codes with

descriptions
AFD_LIST_LIFESTAGE Returns Censation Lifestage Codes with

descriptions
AFD_LIST_ADDITIONAL_CENSUS_INFO Returns Censation Additional Information

with descriptions.
AFD_LIST_HOUSEHOLD_COMPOSITION Returns Household composition codes

with descriptions.
AFD_LIST_BUSINESS Returns Business descriptions
AFD_LIST_SIZE Returns Company Size catagories
AFD_LIST_SIC_CODE Returns SIC Codes
AFD_LIST_COUNCIL_TAX_BAND Returns Council Tax Bands

You then call the AFDData function with the following three parameters:

1. The List Field Specification String (as detailed in Section 4.1)
2. The operation code (See above for options).
3. The instance of the structure or type that you declared.

If you would prefer not to use your own list box in your application, you may
wish to add to the operation constant the AFD_LIST_BOX option. This causes
the DLL to display a list box for you returning the record that the user selects,
rather than returning all matching list records to your application. This is
only suitable for desktop applications as it displays the list box on-screen.
Similarly adding AFD_SHOW_ERROR causes the DLL to display any error
message to the user itself.

The AFDData function will return AFD_SUCCESS for most operations or
AFD_NO_RESULTS_FOUND if there were no matching list items. Other errors
may be returned if the product is not correctly licensed (i.e.,

AFD Common API
Desktop Integration Guide – January 2023

 - 66 -

AFD_ERROR_OPENING_FILES, AFD_ERROR_FILE_READ, or
AFD_DATA_LICENSE_ERROR). So, unless you have used the
AFD_SHOW_ERROR option to ask the DLL to present any error to the user, you
may wish to call AFDErrorText in these circumstances to obtain a string to
display to the user describing the error.

If the return value from the AFDData function is AFD_SUCCESS, then a
matching result has been returned and you can access the fields in the
structure or type instance supplied to obtain full details for it. The resulting
string will be found in the List Field of the structure.

If you have specified the AFD_LIST_BOX option, then the user will have
selected the required item and you can access the selected result in the List
Field of the structure.

Otherwise, you will have retrieved the first record. To retrieve the rest of the
records you should call the AFDData function as above repeatedly with the
same operation code as before but adding the AFD_GET_NEXT constant to
it to obtain subsequent records. These can be added to a list box as above
or processed as required.

Example VB code for a List operation to retrieve alias localities:

 Dim details As AFDListData
 Dim retVal As Long
 Static running As Boolean

 ' Prevent corruption of list box from button being clicked twice
 If running Then Exit Sub
 running = True

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Reset Cancel flag
 cancelFlag = False

 ' Set the lookup
 details.Lookup = txtLookup.Text ' Change txtLookup to the postcode or record key you wish to lookup

 ' Carry out the lookup (Can alter the operation to retrieve N&N list items if desired)
 retVal = AFDData(afdFieldSpec, AFD_LIST_ALIAS_LOCALITY, details)

 ' Abort with Message if error or user cancelled

AFD Common API
Desktop Integration Guide – January 2023

 - 67 -

 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 running = False
 Exit Sub
 End If

 ' Now add matching records to the list box
 Do While retVal >= 0
 ' Add the item to the list box with hidden key at the end

.AddItem Trim(details.List)
' Give user the chance to cancel and allow list box to update

 DoEvents
 ' Check if user cancelled
 If cancelFlag Then
 MsgBox "Lookup Cancelled"
 running = False
 Exit Sub
 End If
 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_LIST_ALIAS_LOCALITY, details)
 Loop

 ' Check results have been returned
 If .ListCount = 0 Then
 MsgBox "No Results Found"
 Else
 .ListIndex = 0 ' Select First item in the list
 End If

 End With

 running = False

Example C++ Code For an Address Management Lookup (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 static bool running = false;
 afdListData details;
 char listItem[2055];
 char msgTxt[255];
 long retVal;
 CListBox* listBox;
 MSG msg;

 // Check if we are already running to prevent crossing over items in the listbox
 if (running) return;
 running = true;

 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Replace m_lstResult with the name given to a variable assigned to your list box control for the results
 listBox = &m_lstResult;

AFD Common API
Desktop Integration Guide – January 2023

 - 68 -

 // Clear out any existing items in the list
 listBox->ResetContent();

 // Reset Cancel flag
 cancelFlag = false;

 // Update Data so we can read the lookup variable
 UpdateData(TRUE);

 // Set the lookup
 strcpy(details.Lookup, m_txtLookup); // Change this to the postcode or record key you wish to lookup

 // Carry out the lookup (Can alter the operation to retrieve N&N list items if desired)
 retVal = (afdData)(afdFieldSpec, AFD_LIST_ALIAS_LOCALITY, (char*)&details);

 // Abort with Message if error or user cancelled
 if (retVal < 0) {
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);
 running = false;
 return;
 }

 // Now add matching records to the list box
 while (retVal >= 0) {

// make up list item
strncpy(listItem, details.List, sizeof(details.List));

 listItem[sizeof(details.List)] = '\0';
 // Add the item to the list box
 listBox->AddString(listItem);
 // Give user the chance to cancel and allow list box to update
 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 // Check if user cancelled
 if (cancelFlag) {
 MessageBox("Search Cancelled", "Cancelled", 0);
 return;
 }
 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_LIST_ALIAS_LOCALITY, (char*)&details);
 }

 // Check results have been returned
 if (listBox->GetCount() == 0)
 MessageBox("No Results Found", "Error", 0);
 else {
 listBox->SetCurSel(0); // Select First item in the list

 OnSelchangeLstResult(); // Set this to your list change method to simulate selecting the first list item

 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

AFD Common API
Desktop Integration Guide – January 2023

 - 69 -

 running = false;

4.8. String Utility Functions – Depreciated and Unsupported

These are provided for compatibility with existing applications which may
depend on them but for new developments we would recommend you use
in-built functions which are included with most modern development
environments.

To carry out a string operation, you will first need to declare an instance of
the AFDStringData structure you have declared in your general declarations
module or class (see Section 4.1). You should then set the Lookup Field to
the string that you wish to clean. If you wish to carry out a Search and
Replace operation, then you should also set the Search and Replace fields
to the appropriate strings.

The operation parameter passed to the AFDData function determines the
String operation, which is carried out, and this should be one of the following:

Constant Description
AFD_ STRING_SEARCH_REPLACE All occurrences in the string specified in

the Lookup field of the string specified in
the Search field are replaced with the
string in the Replace field.

AFD_STRING_SEARCH_REPLACE_CASE This is the same as
AFD_STRING_SEARCH_REPLACE but is
case sensitive.

AFD_STRING_CAPITALISE This corrects the capitalisation of the
string specified in the Lookup field. For
example, ‘commercial STREET’ would
become ‘Commercial Street’.

AFD_STRING_CLEAN_LINE This cleans the string specified in the
Lookup field by removing spurious
characters that should not be in an
address line, e.g., a trailing comma.

AFD_STRING_CHECK_POSTCODE This checks if the string specified in the
Lookup field looks like a postcode.

AFD_STRING_CLEAN_POSTCODE This cleans the postcode specified in the
Lookup field to tidy up the postcode
specified.

AFD Common API
Desktop Integration Guide – January 2023

 - 70 -

AFD_STRING_ABBREVIATE_COUNTY This provides the Royal Mail Approved
county abbreviation for the county
specified in the Lookup field if one exists.

You then call the AFDData function with the following three parameters:

4. The String Field Specification String (as detailed in Section 4.1)
5. The operation code (See above for options).
6. The instance of the structure or type that you declared.

The AFDData function will return AFD_SUCCESS for most operations. If you
are using AFD_STRING_CLEAN_POSTCODE then AFD_NO_RESULTS_FOUND
will be returned if the string does not look like a postcode. For
AFD_STRING_ABBREVIATE_COUNTY the constant AFD_NO_RESULTS_FOUND
will also be returned if there is no Royal Mail approved abbreviation available
for the specified county name.

The resulting string will be found in the Lookup Field of the structure. When
using the AFD_STRING_CLEAN_POSTCODE function the Outcode and Incode
portions of the postcode (portion before and after the space) will also be
avaliable in the separate Outcode and Incode Fields.

Example VB code for a Search/Replace String Operation:

 Dim details As AFDStringData
 Dim retVal as Long

 ' Set the Lookup, Search and Replace parameters
 details.Lookup = txtLookup.Text ' Change txtLookup.Text to your string entry textbox
 details.Search = txtSearch.Text ' Change txtSearch.Text to your search entry textbox
 details.Replace = txtReplace.Text ' Change txtReplace.Text to your replace textbox

 ' Carry out the String operation
 retVal = AFDData(afdStringFieldSpec, AFD_STRING_SEARCH_REPLACE, details)

 ' Check if success
 If retVal >= 0 Then
 ' details.Lookup holds the updated string
 End If

Example C++ code for a Search/Replace String Operation (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 afdStringData details;
 long retVal;
 // Load DLL

AFD Common API
Desktop Integration Guide – January 2023

 - 71 -

 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Update Data so we can read the lookup, search and replace variables
 UpdateData(TRUE);

 // Set the String to lookup, and the string to Search for and Replace with
 strcpy(details.Lookup, m_txtLookup); // Change this to your string textbox value variable
 strcpy(details.Search, m_txtSearch); // Change this to your search textbox value variable
 strcpy(details.Replace, m_txtReplace); // Change this to your replace textbox value variable

 // Carry out the String operation
 retVal = (afdData)(afdStringFieldSpec, AFD_STRING_SEARCH_REPLACE, (char*)&details);

 // Check if success
 if (retVal >= 0) {
 // details.Lookup holds the updated string
 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

4.9. Grid Utility Functions – UK Address Management Only

These functions are used to carry out operations related to grid references
and latitude and longitude values. You can convert between GB and Irish
based grid references and also convert to and from latitude and longitude
values. The facility to convert a value in kilometers to miles and vice-versa,
return an approximate grid reference for a location and also calculate the
distance between two geographical locations is also included.

To carry out a grid operation, you will first need to declare an instance of the
AFDGridData structure you have declared in your general declarations
module or class (see Section 4.1).

The operation parameter passed to the AFDData function determines the
String operation, which is carried out, and this should be one of the following:

Constant Value Description
AFD_GRID_CONVERT 512 Converts a GB or NI based grid reference,

or latitude and longitude value to all
other grid reference types and latitude
and longitude values. You should set the
location in the Fields of your structure or

AFD Common API
Desktop Integration Guide – January 2023

 - 72 -

type instance, for example set the
GBGridE and GBGridN fields and the
function will return the NIGridE and
NIGridN variants along with the latitude
and longitude values etc. (This uses a 1m
resolution (6 digit). Using a constant of 0
rather than 512 uses 5 digit grids).

AFD_GRID_LOOKUP_LOCATION 513 Looks up a town, locality, or partial
postcode specified in the Lookup field
and provides an approximate grid
reference and latitude and longitude
values for the location if a match is found.
Can return multiple records if the location
is ambiguous. (This uses a 1m resolution
(6 digit). Using a constant of 1 rather than
513 uses 5 digit grids).

AFD_GRID_DISTANCE 514 Calculates the distance between a pair
of grid references or latitude and
longitude values specified. You will need
to set a grid or latitude and longitude
value in both the normal fields and those
prefixed with “From” to find the distance
in both Miles and Km. (This uses a 1m
resolution (6 digit). Using a constant of 2
rather than 514 uses 5 digit grids).

You then call the AFDData function with the following three parameters:

1. The Grid Field Specification String (as detailed in Section 4.1)
2. The operation code (See above for options).
3. The instance of the structure or type that you declared.

The AFDData function will return AFD_SUCCESS on success. If the operation
fails, for example a location looked up does not exist or a grid reference
specified is out of range then AFD_NO_RESULTS_FOUND will be returned.

You can then read the resulting grid reference, latitude and longitude values,
or Km and Miles values as appropriate for the operation you have carried
out and the data that you require.

Example VB code for converting a GB based grid reference:

 Dim details As AFDGridData

AFD Common API
Desktop Integration Guide – January 2023

 - 73 -

 Dim retVal as Long

 ' Set the GBGridE and GBGridN parameters
 details.GBGridE = "406600" ' Change 406600 to the grid easting value you wish to convert
 details.GBGridN = "286500" ' Change 286500 to the grid northing value you wish to convert

 ' Carry out the Grid operation
 retVal = AFDData(afdGridFieldSpec, AFD_GRID_CONVERT, details)

 ' Check if success
 If retVal >= 0 Then
 ' Other elements of details hold converted values, e.g. Latitude and Longitude
 End If

Example C++ code for converting a GB based grid reference (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 afdGridData details;
 long retVal;
 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Set the GBGridE and GBGridN parameters
 strcpy(details.GBGridE, "406600"); // Change 406600 to the grid easting value you wish to convert
 strcpy(details.GBGridN, "286500"); // Change 286500 to the grid northing value you wish to convert

 // Carry out the Grid operation
 retVal = (afdData)(afdGridFieldSpec, AFD_GRID_CONVERT, (char*)&details);

 // Check if success
 if (retVal >= 0) {
 // Other elements of details hold converted values, e.g. Latitude and Longitude
 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

4.10. Email Utility Function

This function is used to carry out validation of an email address. This verifies
that the address is in the correct format for an email address and also that
the domain exists to help minimise errors in data entry.

To carry out an email operation, you will first need to declare an instance of
the AFDEmailData structure you have declared in your general declarations
module or class (see Section 4.1).

AFD Common API
Desktop Integration Guide – January 2023

 - 74 -

The operation parameter passed to the AFDData function determines the
level of validation, which is carried out, and this should be one of the
following:

Constant Value Description
AFD_EMAIL_FULL 0 Full email validation including live

domain lookup
AFD_EMAIL_FORMAT 2 Validate email addres format is correct

only
AFD_EMAIL_TLD 3 Validate email format is correct and the

top-level domain exists
AFD_EMAIL_LOCAL 4 Validate email format, top level domain

and for well-known domains carry out
additional checks of the local portion of
the address

You then call the AFDData function with the following three parameters:

4. The Email Field Specification String (as detailed in Section 4.1)
5. The operation code (See above for options).
6. The instance of the structure or type that you declared.

The AFDData function will return AFD_SUCCESS on success. If the operation
fails, for example the email address format is not valid, then
AFD_NO_RESULTS_FOUND will be returned.

Example VB code for validating an email address:

 Dim details As AFDEmailData
 Dim retVal as Long

 ' Set the Email parameter
 details.Email = "support@afd.co.uk" ' Change support@afd.co.uk to the email address you wish to validate

 ' Carry out the Email operation
 retVal = AFDData(afdEmailFieldSpec, AFD_EMAIL_FULL, details)

 ' Check if success
 If retVal >= 0 Then
 ' Email address is valid
 End If

Example C++ code for validating an email address (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 afdEmailData details;

AFD Common API
Desktop Integration Guide – January 2023

 - 75 -

 long retVal;
 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Set the GBGridE and GBGridN parameters
 strcpy(details.Email, "support@afd.co.uk"); // Change support@afd.co.uk to the email address you wish to
validate

 // Carry out the Email operation
 retVal = (afdData)(afdEmailFieldSpec, AFD_GRID_CONVERT, (char*)&details);

 // Check if success
 if (retVal >= 0) {
 // Email Address is Valid
 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

4.11. Clean Function – UK Address Management Only

Requires a Refiner API License

The clean function allows an address, for example from a database, to be
cleaned, i.e., where possible matched to Postcode Plus and therefore given
a correct deliverable address.

To clean an address will first need to declare an instance of the AFD structure
you have declared in your general declarations module or class.

You will then need to set address fields in your structure to specifiy the
address to be cleaned. These do not need to match up to the actual fields,
for example if you have Address Line 1, Address Line 2, Address Line 3, and
Postcode in your database you could set these to Property, Street, Locality
and Postcode fields in the structure and they will be cleaned and returned
in the correct named fields when matched. Note that if you set any non-
address fields they will be ignored (Please see Appendix G for the list of fields
that Refiner will use).

You then call the AFDData function with the following three parameters:

4. The Field Specification String (as detailed in Section 4.1)

AFD Common API
Desktop Integration Guide – January 2023

 - 76 -

5. The operation code (AFD_CLEAN constant)
6. The instance of the structure or type that you declared.

The AFDData function will return a negative value (less than zero) in the case
where an address cannot be fully matched. This could be because the
address was unmatchable, International, or an ambiguous result was found
(see Section 4.1.9 for details of these return codes). An address will still be
returned as this will include the address with Field Placement correction
which you can use if you desire.

Where the function returns a positive value (greater than zero) this means
that the address has been uniquely matched. You may still like to examine
the return value as this will give details as to the level to which the address
was matched (see Section 4.1.9 for details of these return codes). Many
other fields are also avaliable with additional (non-address data) which you
may require.

In the case of an ambiguous or suggested result (return code is -102, -103,
or -104) the first address returned from the function will be the original
address with field placement. For non-batch processes you may wish to
present a list of addresses for the user to choose from and in this case, you
can continue to call the AFDData function as above repeatedly with the
same operation code as before but adding the AFD_GET_NEXT constant to
it to obtain subsequent records. These can be added to a list box as above
or processed as required. You should call AFDData in a lookup to retrieve
these records allowing the user to cancel the lookup should it take some
time, or they realise they have entered something incorrectly.

Example VB code to clean an Address:

 Dim details As AFDAddressData
 Dim retVal as Long

 ' Replace lstResult with the name of your list box if you wish to display ambiguous results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Clear Structure
 ClearAFDAddressData details

 ' Set the fields to specify the address that you wish to clean

AFD Common API
Desktop Integration Guide – January 2023

 - 77 -

 details.Organisation = txtSearchOrganisation.Text
 details.Property = txtSearchProperty.Text
 details.Street = txtSearchStreet.Text
 details.Locality = txtSearchLocality.Text
 details.Town = txtSearchTown.Text
 details.Postcode = txtSearchPostcode.Text

 ' Clean the Address
 retVal = AFDData(afdFieldSpec, AFD_CLEAN, details)

 ' Show the resulting address
 ' These are any of the members of the details. type (Use Trim to remove whitespace)
 txtName.Text = Trim(details.Name)
 txtOrganisation.Text = Trim(details.Organisation)
 txtProperty.Text = Trim(details.Property)
 txtStreet.Text = Trim(details.Street)
 txtLocality.Text = Trim(details.Locality)
 txtTown.Text = Trim(details.Town)
 txtPostcode.Text = Trim(details.Postcode)

 ' Show Cleaning Status
 Msgbox AFDRefinerCleaningText(retVal)

 ' If ambiguous then add matching records to the list box for user selection
 ' - This is optional and not normally useful for batch processes
 If retVal = AFD_REFINER_AMBIGUOUS_POSTCODE Or retVal = AFD_REFINER_AMBIGUOUS_MATCH Or retVal =
AFD_REFINER_SUGGEST_RECORD Then
 Do While retVal <> AFD_ERROR_END_OF_SEARCH
 ' Add the item to the list box with hidden key at the end
 .AddItem details.List + details.Key
 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_CLEAN, details)
 Loop

 End If

 End With

Example C++ Code to clean an address (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 afdAddressData details;
 char listItem[2055];
 char msgTxt[255];
 long retVal;
 CListBox* listBox;

 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Replace lstResult with the name of your list box if you wish to display ambiguous results
 listBox = &m_lstResult;

 // Clear out any existing items in the list

AFD Common API
Desktop Integration Guide – January 2023

 - 78 -

 listBox->ResetContent();

 // Update Data so we can read the search variables
 UpdateData(TRUE);

 // Set the fields to specify the address that you wish to clean
 strcpy(details.Organisation, m_txtSearchOrganisation);
 strcpy(details.Property, m_txtSearchProperty);
 strcpy(details.Street, m_txtSearchStreet);
 strcpy(details.Locality, m_txtSearchLocality);
 strcpy(details.Town, m_txtSearchTown);
 strcpy(details.Postcode, m_txtSearchPostcode);

 // Clean the Address
 retVal = (afdData)(afdFieldSpec, AFD_CLEAN, (char*)&details);

 // Show the resulting address
 // These are any of the members of the details. structure
 m_txtName = details.Name;
 m_txtOrganisation = details.Organisation;
 m_txtProperty = details.Property;
 m_txtStreet = details.Street;
 m_txtLocality = details.Locality;
 m_txtTown = details.Town;
 m_txtPostcode = details.Postcode;

 // Update Fields
 UpdateData(FALSE);

 // Show Cleaning Status
 AFDRefinerCleaningText(retVal, msgTxt);
 MessageBox(msgTxt, "Cleaning Status", 0);

 // If ambigious then add matching records to the list box for user selection
 // - This is optional and not normally useful for batch processes
 if ((retVal == AFD_REFINER_AMBIGUOUS_POSTCODE) || (retVal == AFD_REFINER_AMBIGUOUS_MATCH) || (retVal
== AFD_REFINER_SUGGEST_RECORD)) {
 while (retVal != AFD_ERROR_END_OF_SEARCH) {
 // make up list item with hidden key at the end
 strncpy(listItem, details.List, sizeof(details.List));
 strncpy(listItem + sizeof(details.List), details.Key, sizeof(details.Key));
 listItem[sizeof(details.List) + sizeof(details.Key)] = '\0';
 // Add the item to the list box
 listBox->AddString(listItem);
 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_CLEAN, (char*)&details);
 }
 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

AFD Common API
Desktop Integration Guide – January 2023

 - 79 -

5. The Code Explained (PostcodeEverywhere XML)

5.1. General Declarations

This provides a set of constants which provide the server name, serial
number, password and userid which are to be used with the server. These
can be modified to suit your needs and are required by all functions which
contact the XML server.

You might prefer to read these settings from the registry or a configuration
file if you want them to be user configurable or easily changed later.

These constants are as follows:

AFD_SERVER
Provides the start of the URL for the Postcode Everywhere Server. For
example, if you are using our hosted service this should be
http://pce.afd.co.uk. If you are using your own server then this should be set
to the server name as it would be accessible from any client using it. This
should include the port if it is running on, if it is not port 80, for example
http://myserver:81.

AFD_SERIAL_NUMBER
Provides the serial number required if you are using our hosted service
(pce.afd.co.uk). This will have been supplied on your license certificate you
will have received when you purchased your license to use the service. This
is not required if you are using your own server, however you may wish to
leave the constant defined as an empty string so you can easily change
your application to work the other way later if required.

AFD_PASSWORD
Provides your password to the service which is required if you are using our
hosted service.

AFD_USER_ID
This is an optional setting but is useful for allowing the user or application
using the service to be identified and can be used with either the hosted
service or your own PostcodeEverywhere server.

AFD Common API
Desktop Integration Guide – January 2023

 - 80 -

5.2. Calling the PostcodeEverywhere XML Server

All calls to the PostcodeEverywhere XML server follow the same basic
structure. The parameters that make up each call to the server can either
be specified as parameters in the URL string, separated by ampersands i.e.,
using GET functionality, or can be sent to the server as a POST. Note that in
the case of Internet applications we strongly recommend that you have
calls to the service running server-side with the code inaccessible to end-
users to prevent abuse of the service, and in the case of the hosted service
to protect your serial number and password.

The URL for PCE requests is AFD_SERVER + “/afddata.pce”. For example,
http://pce.afd.co.uk/afddata.pce” would be our hosted server URL for
Common-API requests.

The parameters usually supplied are then as follows:

Serial AFD_SERIAL
Password AFD_PASSWORD
UserID AFD_USER_ID
Data Specifies the data you are using (see section 5.2.1 below)
Task Specifies the task to carry out (see section 5.2.2 below)
Fields: Specifies the fields to use (see section 5.2.3 below)
MaxQuantity Specifies the maximum number of records to return

These are then followed by function specific parameters, for example if you
are carrying out a Lookup you would use the lookup parameter to specify
the field to lookup.

Note that the Serial and Password parameters are not necessary if you are
not using our hosted service, but you may wish to leave these in to allow
future flexibility. The UserID and MaxQuantity settings are also optional,
however if not specified a maximum quantity of 100 results will be assumed.

You should note that regardless of the maximum quantity setting there is a
timeout setting (default 30 seconds) and a 128-kilobyte buffer limit for the
server to retain server responsiveness and prevent buffer overflows. This

AFD Common API
Desktop Integration Guide – January 2023

 - 81 -

means that with large quantities of results or slow searches the number of
results returned may be less than MaxQuantity. Postcode and WorldAddress
also have upper limits of 300 and 1000 results respectively. If you are not
obtaining the result you require, you should refine your search to be more
specific.

Your then load this XML document in your parser and should check for any
error returned by the parser and deal with it appropriately (e.g., displaying
the error to the user and aborting).

You can then read the required data from the records returned. The
example code generated by the API Wizard shows how to do this for several
development environments and you can also see some sample code in
section 5.3 onwards of this documentation.

Regardless of the data or operation used, the XML structure will always be in
the following format:

<AFDPostcodeEverywhere>
 <Result>1</Result>
 <ErrorText />
 <Item value = “1”>
 … fields returned
 </Item>
 …
</AFDPostcodeEverywhere>

Where:

Result is numeric and either contains an error (value less than 0) or the
number of items returned (> 0).

ErrorText contains a description of the error which occurred if the value fo
Result is less than 0.

If the function is successful, then the Result code returned is >= 0. The results
are contained in Item nodes (this will be one or more if the operation was
successful).

AFD Common API
Desktop Integration Guide – January 2023

 - 82 -

5.2.1. The Data Parameter

This is used to specify the type of Data you require and should be one of the
following options:

Data Parameter Usage
Address For all address management products, e.g., Postcode,

Postcode Plus, Names & Numbers, TraceMaster, ZipAddress
and WorldAddress this is used to lookup and search for
addresses.

Bank Used to lookup or search for Bank data using BankFinder
and also for account or card validation.

Nearest Used to find the Nearest in your database to a specified
postcode or location.

List Used to list the alias localities for any address with Postcode
Plus, Names & Numbers and TraceMaster. In Names &
Numbers and TraceMaster only, this can also list possible
field values for most data fields.

Grid Provides a range of Grid utility functions useful for
obtaining, converting, or calculating distances for grid
references.

Email Provides a utility to validate the format of Email addresses
String – Deprecated Provides a range of String utility functions sometimes useful

for addressing.

5.2.2. The Task Parameter

This is used to specify the specific task that you wish to carry out. The
possible values for this depend on the type of data being used (the data
parameter) and could be one of the following:

Data
Parameter

Task Parameter Use

Address FastFind To lookup matching addresses
quickly from a postcode or search
criteria such as “Commercial Street,
Birmingham”.

 Lookup To lookup matching addresses
quickly from a postcode (or
zipcode), e.g., “B11 1AA”. Only a full
postcode without any property

AFD Common API
Desktop Integration Guide – January 2023

 - 83 -

information included will yield
results.

 PropertyLookup To lookup matching addresses
quickly from a postcode (or
zipcode), which may optionally
include property information to find
a match, e.g., “304, B11 1AA”.

 Search To search for matching addresses
based on specific search criteria.

 Retrieve To re-retrieve a previous result, for
example when selected from a list.

 Clean To clean an address – requires a
Refiner API license.

Bank FastFind Used to lookup bank data from a
lookup string, for example a sortcode
or bank and branch name, e.g.,
“560036”.

 Search To search for matching bank records
based on specific search criteria.

 Retrieve To re-retrieve a previous result, for
example when selected from a list.

 Account Used to validate a sort code and
account number is valid (that it is a
valid number for the bank branch it
is held at, which does not guarantee
that it exists).

 Card Used to validate a card number is
valid (that it is a valid number for the
type of card, not that it actually
exists).

Nearest FastFind To find the Nearest locations quickly
from a postcode, location (e.g.,
locality or town), grid reference, or
latitude and longitude value.

 MultipleFastFind As above, but where a find string
returns multiple possible locations,
e.g., Bradford, the user can select the
location they require in an additional
step to Nearest.

 Lookup Find the nearest from a postcode,
e.g., “B11 1AA”. Only full postcodes will
yield results.

 Search To search for matching records in
your database matching the criteria
that you search on.

AFD Common API
Desktop Integration Guide – January 2023

 - 84 -

 Retrieve To re-retrieve a previous result, for
example when selected from a list.
Uses the primary key to retrieve the
record.

List ListAliasLocality Returns all alias localities for the
sector that the specified postcode or
key resides in.

 The following are applicable when using International data only:
 ListCountryISO Will return the ISO codes of all

available countries.
 ListCountry Will return the names of all available

countries.
 The following are applicable to Names & Numbers and TraceMaster

Products Only:
These all return a list of all entries of the data item specified in the
data.
Setting the lookup parameter will restrict matches to only those items
starting with the specified string.

 ListForename Returns Forenames (first names).
 ListSurname Returns Surnames
 ListOrganisation Returns Organisations
 ListProperty Returns Properties
 ListStreet Returns Streets
 ListLocality Returns Localities
 ListTown Returns Postal Towns
 ListCounty Returns Counties (This includes

Postal, Traditional and
Administrative County names)

 ListMailsortCode Returns Mailsort codes
 ListUrbanRuralCode Returns Urban Rural Codes
 ListUrbanRuralName Returns Urban Rural Names
 ListWardCode Returns Ward Codes
 ListWardName Returns Ward Names
 ListConstituency Returns Constituencies
 ListEERCode Returns EER Codes (European

Electoral Region Codes)
 ListEERName Returns EER Names
 ListAuthorityCode Returns Local / Unitary Authority

Codes
 ListAuthority Returns Authority Names
 ListLEACode Returns LEA Codes (Local Education

Authority)
 ListLEAName Returns LEA Names
 ListTVRegion Returns TV Regions
 ListNHSCode Returns NHS Codes

AFD Common API
Desktop Integration Guide – January 2023

 - 85 -

 ListNHSName Returns NHS Names
 ListNHSRegionCode Returns NHS Region Codes
 ListNHSRegionName Returns NHS Region Names
 ListPCTCode Return CCG Codes
 ListPCTName Return CCG Names
 ListCensationCode Returns Censation Codes
 ListAffluence Returns Censation Affluence Codes

with descriptions
 ListLifestage Returns Censation Lifestage Codes

with descriptions
 ListAdditionalCensusInfo Returns Censation Additional

Information with descriptions.
 ListHouseholdComposition Returns Household composition

codes with descriptions.
 ListBusiness Returns Business descriptions
 ListSize Returns Company Size catagories
 ListSIC Returns SIC Codes
 ListCouncilTaxBand Returns Council Tax Bands
 ListConstituencyCode Returns Constituency Codes
 ListSubCountryName Returns Sub Country Names
 ListDevolvedConstituencyCode Returns Devolved Contituency

Codes
 ListDevolvedConstituencyName Returns Devolved Cnstituency Name
String -
Depreciated

SearchReplace Replaces instances of x with y in the
supplied string.

 SearchReplaceCase A case-sensitive version of
SearchReplace

 Capitalise Corrects capitalisation of the string
as appropriate for address fields,
e.g. “COMMerCIAL street” becomes
“Commercial Street”

 CleanLine Cleans an address line, removing
spurious characters

 CheckPostcode Checks if a postcode is in a valid
format.

 CleanPostcode Cleans common errors in a
postcode, e.g. “B11 IAA” would be
changed to “B11 1AA”.

 AbbreviateCounty Returns the Royal Mail approved
abbreviation (if one exists) for the
supplied County name, e.g.
“Oxfordshire” becomes “Oxon”.

Grid Convert1m Used to convert a grid reference to
latitude and longitude (or vice-
versa), a grid reference on the Irish

AFD Common API
Desktop Integration Guide – January 2023

 - 86 -

Grid to the GB grid (or vice-versa).
Returns 1m resolution grids.

 LookupLocation1m Enables a grid reference to be looked
up for a specified locality or town.
Returns 1m resolution grids.

 Distance1m Calculates the distance between
two grid references or latitude and
longitude values. Returns 1m
resolution grids.

 Convert Used to convert a grid reference to
latitude and longitude (or vice-
versa), a grid reference on the Irish
Grid to the GB grid (or vice-versa).
Returns 10m resolution grids.

 LookupLocation Enables a grid reference to be looked
up for a specified locality or town.
Returns 10m resolution grids.

 Distance Calculates the distance between
two grid references or latitude and
longitude values. Returns 10m
resolution grids.

Email Full Full email validation including live
domain lookup

 Format Validate email addres format is
correct only

 TLD Validate email format is correct and
the top level domain exists

 Local Validate email format, top level
domain and for well known domains
carry out additional checks of the
local portion of the address

5.2.3. The Fields Parameter

This parameter provides the list of fields which are to be searched/returned
by the XML operation. In most cases you would set this to the Standard
preset which is the standard field list for the data and task including fully
formatted address fields were appropriate. However, other formats are also
available, and the List option can be particularly useful to reduce the
amount of XML returned if you are presenting a list of results to the user first.
You should note that additional XML fields may be added to any of these
presets in future releases, but fields would not be removed.

AFD Common API
Desktop Integration Guide – January 2023

 - 87 -

For a full list of the fields included in each field preset, please see Appendix
J.

Fields Preset Valid for Data
Parameters:

Provides

List Address, Bank,
Nearest

Only the bare essential fields to allow the user
to select the desired result from a list box.
This includes the list item and key and for
Address fields also includes the Postcode
and PostcodeFrom parameters to allow
changed postcodes to be detected.

Standard (All) Returns all applicable fields for the data type,
including a fully formatted address, as would
be used on an address label, where
applicable.

Raw Address, Bank Returns all applicable fields for the data type,
but the address is included in the raw PAF
format, for example house number,
dependant thoroughfare and thoroughfare
are returned as individual fields rather than a
single Street field.

BS7666 Address Returns all applicable fields for the data type,
but the address is included in a BS7666
compliant format which is useful if you
require to store addresses in this form.

USA Address Returns fields in the format used in the USA,
most useful when used with ZipAddress for
looking up US addresses. However, this
format will also work with UK addresses just
as the UK formats will work with US addresses.

Simple Address Returns only the standard UK name and
address, list and key fields when you require
address data only and wish to minimise the
amount of XML data returned.

International Address Recommended for international addresses,
but also useable with UK addresses. This
returns formatted address lines which
provides the address in a format ready for
printing on an envelope or address label, as
well as component address fields.

Account Bank Contains applicable fields for Account
Number validation.

Card Bank Contains applicable fields for Card Number
validation.

AFD Common API
Desktop Integration Guide – January 2023

 - 88 -

Alternatively you can specify your own list of fields to return instead of the
preset in the format, field1:maximum length 1@field2:maximum length2…

For example:

&Fields=Lookup:255@Name:120@Organisation:120@Property:120@Street:120
@Locality:70@Town:30@Postcode:10@PostcodeFrom:8@Key:40@List:512

When doing this you must ensure you include all fields you would like to be
input and output, including those you would supply on the query string (such
as the Lookup field).

However, using one of the presets shown in the above table is the preferred
option when using XML.

5.2.4. The Skip Parameter – UK Address Management Only

For address management products the skip parameter can be used to skip
records, for example to return the first record on a postcode only.

The available options are as follows:

Field Value Description
None (or blank) Returns all records matching the lookup or

search criteria specified.
Address Only the first record per address (e.g., first

listed resident) is returned. Only has any
effect in Names & Numbers.

Postcode Only the first record per postcode is
returned.

Sector Only the first record in each postcode
sector is returned. (A postcode sector is
the portion of the postcode before the
space plus the first digit after it, e.g. B11 1 is
a sector).

Outcode Only the first record per Outcode is
returned. The Outcode is the portion of the
postcode before the space, e.g., B11.

Town Only the first record per Post Town, e.g.,
Birmingham is returned.

Area Only the first record per Postcode Area is
returned. A Postcode Area is the letters at

AFD Common API
Desktop Integration Guide – January 2023

 - 89 -

the start of the postcode, e.g., B11 1AA is in
Postcode Area B, IM8 is in Postcode Area IM.

5.2.5. Additional Parameters

The following additional parameters can be supplied in the query string to
set Common API options:

Parameter Description
Clearing BankFinder Only: Set to "UK" to return UK

member (BACS) banks only, set to "Irish" for
IPSO member banks only.

NoSort Names & Numbers Only: Set to 1 if you do
not wish records to be returned in number
sorted order (will instead be sorted by
DPS).

ListSurname Names & Numbers Only: Set to 1 to return
the surname first in the list return item.

ApproxGrids Address Management Products
Containing Grid References Only: Set to 1 to
provide an approximate grid reference for
the postal town or locality of a postcode
where no postcode level grid reference
exists in the data.

Postzon Set to 1 to return Royal Mail Postzon grid
references in preference to DataTalk
GeoRef grids.

5.2.6. Database Parameters for Nearest

When using Nearest you will also need to specify the following parameter to
specify the database to use (this is connected too on the server side):

Parameter Description
DBConnect The name of the database to connect to as defined by a Nearest:

<DBName> section in afddata.ini

As a security precaution only, databases specified in afddata.ini can be
connected to and the settings which are used are specified in that ini file.
You need to ensure the afddata.ini file is in your windows folder (e.g.,

AFD Common API
Desktop Integration Guide – January 2023

 - 90 -

c:\windows or c:\winnt folder) and has a section called “Nearest:
<DBName>” where DBname is the name used in the DBConnect parameter
for PCE calls.

This section requires the following settings to connect to the database:

Parameter Description
Type The Database Type – ODBC, Access, Paradox or XBase.
Name The name of the DSN to connect too in the case of an ODBC

database, or the filename in the case of Access, Paradox, or XBase
databases.

UID The username if required for an ODBC Connection (can be omitted
if not required).

PWD The password if required for an ODBC Connection (can be omitted
if not required).

SQL The SQL String to use to Query your database (e.g., SELECT * FROM
TABLE). Not required for Paradox or XBase.

Primary The name of the Primary Key Field in your Nearest database.
GridE The name of the field containing the Grid Easting values in your

database. If your database does not contain grid references, you
will need to add a GridE and GridN field and use the product front-
end or AFD Refiner to populate these fields with the grid references
which Nearest requires to function.

GridN The name of the field containing the Grid Northing values in your
database.

List Specifies the fields (comma separated) to use to construct the List.
It is recommended that this contains either the Miles or Km field
provided by PostcodeEverywhere to provide the distance followed
by some of your database fields to identify the record to the user.
The list item is often presented in order of distance to allow the user
to select the required record. Even if you are going to construct
your own list or not use a list it is recommended to configure this
correctly for testing purposes.

An example section for connecting to a DSN called Phones4U containing a
table called Nearest would be:

[Nearest: phones4u]
Type=ODBC
Name=Phones4U
UID=username
PWD=password

AFD Common API
Desktop Integration Guide – January 2023

 - 91 -

SQL=SELECT * FROM NEAREST
Primary=Postcode
GridE=GridE
GridN=GridN
List=Miles,Postcode,Title

5.3. Lookup Function

The most commonly used function across our product range is the Lookup
function. By entering a single string, the user can find the results matching
their lookup criteria.

To carry out a lookup you would pass a query string to the afddata.pce URL
on the Postcode Everywhere XML server as described in section 5.2. The only
additional parameter needed is Lookup= which should be set to the lookup
string to find.

If you are wishing to use International data, then you will also need to add
the &Country= or &CountryISO parameter (e.g. &CountryISO=FRA) to specify
the country to use if it is not the UK (GBR).

For example, a valid lookup string for our hosted service to retrieve a list of
matching results from an Address Management product would be:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Address&Task=FastFind&Fields=List&Lookup=B111AA

When using BankFinder you may wish to add the clearing system you wish
to restrict records to as well. You can do this by adding the Clearing
parameter to the string. Using Clearing=UK restricts records to those on the
UK (BACS) clearing system only. Using Clearing=Irish restricts records to
those on the Irish (IPSO) clearing system only. If you can only clear through
the UK system it is important to include the Clearing=UK parameter, for
example:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Bank&Clearing=UK&Task=FastFind&Fields=List&Looku
p=050246

AFD Common API
Desktop Integration Guide – January 2023

 - 92 -

An example string to retrieve a nearest result using AFD Nearest functionality
would be:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Nearest&Task=FastFind&Fields=List&
DBConnect=MyDB&MaxQuantity=20&Miles=200&Lookup=B111AA

If an error occurs the Result field returned will be set to a value less than zero
and the ErrorText will contain a corresponding error message.

In the case of Address Management products, the PostcodeFrom field
returned in each XML item will be set if a postcode was looked up which has
changed following a Royal Mail recoding. The lookup will complete using the
new postcode (found in the Postcode field), however you may wish to
display a message notifying the user of this.

Assuming no error occurred, you can then either add each result to a list box
(using Field=List would reduce the size of the XML returned in this case) or
process each result in full.

 Example VB Code for carrying out an Address Management lookup

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim pcFromNode As Object
 Dim dataNode As Object
 Dim itemNodes As Object
 Dim listNode As Object
 Dim keyNode As Object
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"
 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"

AFD Common API
Desktop Integration Guide – January 2023

 - 93 -

 xmlLocation = xmlLocation + "Data=Address&Task=FastFind&Fields=List

 ' Set the maximum number of records to return
 xmlLocation = xmlLocation + "&MaxQuantity=100"

 ' Set the lookup string
 xmlLocation = xmlLocation + "&Lookup=" + txtLookup.Text ' Change txtLookup to your lookup entry textbox

 ' Load the XML from the webserver with the query string
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

 ' Check if PCE returned an error and if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")
 Set itemNodes = root.selectNodes("Item")
 If dataNode Is Nothing or itemNodes Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 If Val(dataNode.Text) < 1 Then
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text ' Show the user the error
 End If
 Exit Sub
 End If

 ' Display any changed postcode if applicable
 Set pcFromNode = itemNodes(0).selectSingleNode("PostcodeFrom")
 Set dataNode = itemNodes(0).selectSingleNode("Postcode")
 If Not (pcFromNode Is Nothing) and Not (dataNode Is Nothing) Then
 If pcFromNode.Text <> "" Then
 MsgBox "Postcode has changed from " + pcFromNode.Text + " to " + dataNode.Text
 End If
 End If

 ' Now add matching records to the list box
 For Each dataNode In itemNodes
 ' Get the data nodes
 Set listNode = dataNode.selectSingleNode("List")
 Set keyNode = dataNode.selectSingleNode("Key")
 If Not (listNode Is Nothing) And Not (keyNode Is Nothing) Then
 ' Add the item to the list box with hidden key at the end
 .AddItem listNode.Text + Space(512) + keyNode.Text
 End If
 Next

 If .ListCount <> 0 Then .ListIndex = 0 ' Select First item in the list

AFD Common API
Desktop Integration Guide – January 2023

 - 94 -

 End With

5.4. Search Function

The search function allows records to be located by searching using specific
fields rather than a general lookup string. It allows any of the Fields to be
searched that are specified as being searchable for the AFD product that
you are using in Appendix A (for Address Management products) or
Appendix B (for BankFinder). In the case of Nearest any field in your
database can be searched for.

To carry out a search you would pass a query string to the afddata.pce URL
on the Postcode Everywhere XML server as described in section 5.2. You
should add a parameter for each field that you wish to search on.

If you are wishing to use International data, then you will also need to add
the &Country= or &CountryISO parameter (e.g. &CountryISO=FRA) to specify
the country to use if it is not the UK (GBR).

For example, a valid lookup string for our hosted service to retrieve a list of
matching results for a search for Commercial Street in the street field and
Birmingham in the town field from an Address Management product would
be:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Address&Task=Search&Fields=List&Street=Commerci
al%20Street&Town=Birmingham

When using BankFinder you may wish to add the clearing system you wish
to restrict records to as well. You can do this by adding the Clearing
parameter to the string. Using Clearing=UK restricts records to those on the
UK (BACS) clearing system only. Using Clearing=Irish restricts records to
those on the Irish (IPSO) clearing system only. If you can only clear through
the UK system it is important to include the Clearing=UK parameter, for
example:

AFD Common API
Desktop Integration Guide – January 2023

 - 95 -

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Bank&Clearing=UK&Task=Search&Fields=List&OwnerB
ankFullName=Natwest&Town=Birmingham

If an error occurs the Result field returned will be set to a value less than zero
and the ErrorText will contain a corresponding error message.

Assuming no error occurred, you can then either add each result to a list box
(using Field=List would reduce the size of the XML returned in this case) or
process each result in full.

Example VB code for an Address Management Search:

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim pcFromNode As Object
 Dim dataNode As Object
 Dim itemNodes As Object
 Dim listNode As Object
 Dim keyNode As Object
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"
 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"
 xmlLocation = xmlLocation + "Data=Address&Task=Search&Fields=List

 ' Set the maximum number of records to return
 xmlLocation = xmlLocation + "&MaxQuantity=100"

 ' Set the parameters to search on
 xmlLocation = xmlLocation + "&Organisation=" + txtSearchOrganisation.Text
 xmlLocation = xmlLocation + "&Property=" + txtSearchProperty.Text
 xmlLocation = xmlLocation + "&Street=" + txtSearchStreet.Text
 xmlLocation = xmlLocation + "&Locality=" + txtSearchLocality.Text
 xmlLocation = xmlLocation + "&Town=" + txtSearchTown.Text
 xmlLocation = xmlLocation + "&Postcode=" + txtSearchPostcode.Text

AFD Common API
Desktop Integration Guide – January 2023

 - 96 -

 ' Load the XML from the webserver with the query string
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

 ' Check if PCE returned an error and if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")
 Set itemNodes = root.selectNodes("Item")
 If dataNode Is Nothing or itemNodes Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 If Val(dataNode.Text) < 1 Then
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text ' Show the user the error
 End If
 Exit Sub
 End If

 ' Now add matching records to the list box
 For Each dataNode In itemNodes
 ' Get the data nodes
 Set listNode = dataNode.selectSingleNode("List")
 Set keyNode = dataNode.selectSingleNode("Key")
 If Not (listNode Is Nothing) And Not (keyNode Is Nothing) Then
 ' Add the item to the list box with hidden key at the end
 .AddItem listNode.Text + Space(512) + keyNode.Text
 End If
 Next

 If .ListCount <> 0 Then .ListIndex = 0 ' Select First item in the list

 End With

5.5. Retrieve Function

If you have added items to a list retrieving own the List and Key items, you
will want to re-retrieve a result should the user click on it. To retrieve the
record, they select you should use the Key Field which will have been
returned with each result, and which you should have stored with the list
items.

AFD Common API
Desktop Integration Guide – January 2023

 - 97 -

To fetch the record, you would pass a query string to the afddata.pce URL on
the Postcode Everywhere XML server as described in section 5.2 using the
Retrieve Task. The only additional parameter needed is Key= which should
be set to the key field which was returned for the item.

If you are wishing to use International data, then you will also need to add
the &Country= or &CountryISO parameter (e.g. &CountryISO=FRA) to specify
the country to use if it is not the UK (GBR).

For example, if you had retrieved a result with a key of B111AA1001 then a valid
lookup string for our hosted service to retrieve the full result from an Address
Management product would be:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Address&Task=Retrieve&Fields=Standard&Key=B111AA
1001

If an error occurs (e.g., the key supplied was invalid) the Result field returned
will be set to a value less than zero and the ErrorText will contain a
corresponding error message, otherwise you will now have the record fields
in the XML.

Note that only one item will ever be returned from a Retrieve Task as you are
requesting a single item, by its key, which was earlier returned in a list.

Example VB code to fetch an item selected in the list for Address Management products:

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim pcFromNode As Object
 Dim dataNode As Object
 Dim itemNodes As Object
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"

AFD Common API
Desktop Integration Guide – January 2023

 - 98 -

 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"
 xmlLocation = xmlLocation + "Data=Address&Task=Retrieve&Fields=Standard

 ' Set the maximum number of records to return
 xmlLocation = xmlLocation + "&MaxQuantity=100"

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Check a valid item is selected
 If .ListIndex = -1 Then
 Msgbox "No Item Selected"
 Exit Sub
 End If

 ' Set XML parameter to retrieve the selected record
 xmlLocation = xmlLocation + "&Key=" + Trim(Right(lstResult, 40)) ' Replace lstResult with the name of your list
box for the results

 ' Finished with the list box
 End With

 ' Load the XML from the webserver with the query string
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

 ' Check if PCE returned an error and if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")
 Set itemNodes = root.selectNodes("Item")
 If dataNode Is Nothing or itemNodes Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 If Val(dataNode.Text) < 1 Then
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text ' Show the user the error
 End If
 Exit Sub
 End If

 ' Now Assign required fields to your application (only one will be returned)
 Set dataNode = itemNodes(0).selectSingleNode("Name")
 If Not (dataNode Is Nothing) Then txtName.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Organisation")
 If Not (dataNode Is Nothing) Then txtOrganisation.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Property")

AFD Common API
Desktop Integration Guide – January 2023

 - 99 -

 If Not (dataNode Is Nothing) Then txtProperty.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Street")
 If Not (dataNode Is Nothing) Then txtStreet.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Locality")
 If Not (dataNode Is Nothing) Then txtLocality.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Town")
 If Not (dataNode Is Nothing) Then txtTown.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Postcode")
 If Not (dataNode Is Nothing) Then txtPostcode.Text = dataNode.Text

5.6. Account Number Validation – BankFinder Only

This function provides the ability to validate a sort code and account
number. This checks that the account number is valid for the branch of the
bank which the sortcode belongs to. This does not guarantee that the
account number exists, or sufficient funds exist for any transaction, but
greatly cuts down on errors due to incorrectly entered numbers. The
function will also translate any non-standard account numbers (e.g., a 10-
digit account number).

To carry out a validation you would pass a query string to the afddata.pce
URL on the Postcode Everywhere XML server as described in section 5.2. You
should supply a sortcode and account number as additional parameters
(or instead the IBAN if validating an account number in that International
standardised format).

For example, a valid lookup string for our hosted service to validate an
account number 24782346 on sort code 774814 would be as follows:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Bank&Task=Account&Fields=Account&SortCode=774
814&AccountNumber=24782346

You may wish to add the clearing system you wish to restrict records to as
well. You can do this by adding the Clearing parameter to the string. Using
Clearing=UK restricts records to those on the UK (BACS) clearing system
only. Using Clearing=Irish restricts records to those on the Irish (IPSO)
clearing system only. If you can only clear through the UK system it is
important to include the Clearing=UK parameter, for example:

AFD Common API
Desktop Integration Guide – January 2023

 - 100 -

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Bank&Clearing=UK&Task=Account&Fields=Account&
SortCode=774814&AccountNumber=24782346

You can also supply a Roll Number in the case of crediting some building
society accounts which require one which will also be checked.

If the account number is invalid, the Result field returned will be set to a value
less than zero and the ErrorText will contain a corresponding error message.

Assuming no error occurred, you can assume the account number is valid,
but should read the Sortcode, AccountNumber, IBAN and RollNumber (if
required) and TypeOfAccount parameters in-case the number has been
translated.

If the return value is AFD_SUCCESS (1) then the account number has been
validated, if the return value is AFD_SUCCESS_NO_VALIDATION (2) then
account numbers on this sortcode cannot be validated and so the number
should still be treated as valid. This return code is provided so you can carry
out an additional check on the account number, e.g., asking a customer on
the phone to repeat it, checking it has been entered from a paper form
correctly etc. if you wish to do so.

Note that the only Field type valid for validating account numbers is
Standard as the result contains no address. Only a single result will ever be
returned so there is no need to list results.

Should you also wish to check the branch details match those that the
customer has supplied, check the transaction types allowed at this branch,
or obtain the address to use for this branch (may not be the branch physical
location) then you can carry out a lookup for the sortcode (see Section 5.3)
to obtain the branch information.

Example VB code to validate an account number:

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim pcFromNode As Object
 Dim dataNode As Object
 Dim itemNodes As Object

AFD Common API
Desktop Integration Guide – January 2023

 - 101 -

 Dim sortCodeNode As Object
 Dim accountNode As Object
 Dim typeOfAccountNode As Object
 Dim clearingSystemNode As Object
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"
 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"
 xmlLocation = xmlLocation + "Data=Bank&Task=Account&Clearing=Both&Fields=Account

 ' Set the Sort Code and Account Number
 xmlLocation = xmlLocation + "&SortCode=" + txtValidateSortCode.Text ' Change txtValidateSortCode to your
sortcode entry textbox

 xmlLocation = xmlLocation + "&AccountNumber=" + txtValidateAccountNo.Text ' Change txtValidateAccountNo
to your account number entry textbox

 ' Load the XML from the webserver with the query string
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

 ' Check if PCE returned an error and if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")
 Set itemNodes = root.selectNodes("Item")
 If dataNode Is Nothing or itemNodes Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 If Val(dataNode.Text) < 1 Then
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text ' Show the user the error
 End If
 Exit Sub
 End If

 ' Display validation result - with details to submit for payment - note non-standard account number's will be
translated
 Set sortCodeNode = itemNodes(0).selectSingleNode("SortCode")
 Set accountNode = itemNodes(0).selectSingleNode("AccountNumber")
 Set typeOfAccountNode = itemNodes(0).selectSingleNode("TypeOfAccount")

AFD Common API
Desktop Integration Guide – January 2023

 - 102 -

 Set clearingSystemNode = itemNodes(0).selectSingleNode("ClearingSystem")
 If sortCodeNode Is Nothing Or accountNode is Nothing Or typeOfAccountNode Is Nothing Or
clearingSystemNode is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 MsgBox "Account Number Valid: " + vbCrLf + vbCrLf + "Sortcode: " + sortCodeNode.Text + vbCrLf + "Account
Number: " + accountNode.Text + vbCrLf + "Type of Account Code: " + typeOfAccountNode.Text + vbCrLf +
"Clearing System: " + clearingSystemNode.Text

 End If

5.7. Card Number Validation – BankFinder Only

This function provides the ability to validate a card number, and optionally
check that an expiry date indicates that the card is in-date. This checks that
the card number is a valid one for the type of card and can indicate the card
type. This does not guarantee that the card exists or that a transaction will
be authorized, but greatly cuts down on errors due to incorrectly entered
numbers.

To carry out a validation you would pass a query string to the afddata.pce
URL on the Postcode Everywhere XML server as described in section 5.2. You
should supply a card number, and optionally expiry date, as additional
parameters.

For example, a valid lookup string for our hosted service to validate a card
number of 4903005748392742 with expiry date 01/10 would be as follows:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Bank&Task=Card&Fields=Card&CardNumber=49030
05748392742&ExpiryDate=01/10

If the card number is invalid, the Result field returned will be set to a value
less than zero and the ErrorText will contain a corresponding error message.

Assuming no error occurred, you can assume the card number is valid. If
you wish to determine the card type, the CardType field will hold this
information.

AFD Common API
Desktop Integration Guide – January 2023

 - 103 -

Note that the only Field type valid for validating card numbers is Standard
as the result contains no address. Only a single result will ever be returned
so there is no need to list results.

Example VB code to validate a card number:

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim pcFromNode As Object
 Dim dataNode As Object
 Dim itemNodes As Object
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"
 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"
 xmlLocation = xmlLocation + "Data=Bank&Task=Card&Fields=Card

 ' Set the Card Number and Expiry Date (Optional)
 xmlLocation = xmlLocation + "&CardNumber=" + txtValidateCardNo.Text ' Change txtValidateCardNo to your
card number entry textbox
 xmlLocation = xmlLocation + "&ExpiryDate=" + txtValidateExpiry.Text ' Change txtValidateExpiry to your expiry
date entry textbox

 ' Load the XML from the webserver with the query string
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

 ' Check if PCE returned an error and if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")
 Set itemNodes = root.selectNodes("Item")
 If dataNode Is Nothing or itemNodes Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 If Val(dataNode.Text) < 1 Then
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text ' Show the user the error

AFD Common API
Desktop Integration Guide – January 2023

 - 104 -

 End If
 Exit Sub
 End If

 ' Display validation result
 Set dataNode = itemNodes(0).selectSingleNode("CardType")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 MsgBox "Card Valid: " + dataNode.Text
 End If

5.8. List Functions – UK Address Management Only

With Postcode Plus, Names & Numbers and TraceMaster products you can
use the list functions to obtain a list of alias localities for the postcode sector
that a postcode or result is contained in. These are non-postally required
localities held by Royal Mail which can or may be included on an address if
desired. An example of this would be including Wimbledon for an address
in London. You should note that these are stored at postal sector level (e.g.,
SW19 1) and there are often multiple entries for an address so a locality being
returned does not mean it is necessarily the best one for the particular
address you are viewing.

For Names & Numbers and TraceMaster products only it is also possible to
obtain a list of possible values for most fields, e.g., all the Mailsort codes
present, business descriptions, etc. You can also specify the start value of
the field, e.g., return all surnames present starting with “Smith”.

When using International data, you can also use the List functions to obtain
a list of all available countries (names or ISO codes).

To carry out a lookup you would pass a query string to the afddata.pce URL
on the Postcode Everywhere XML server as described in section 5.2. The only
additional parameter needed is Lookup= which should be set to the lookup
string to find.

For example, a valid lookup string for our hosted service to retrieve a list of
alias localities for the sector containing postcode B29 4AA would be:

AFD Common API
Desktop Integration Guide – January 2023

 - 105 -

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=List&Task=ListAliasLocality&Fields=Standard&Lookup=
B29 4AA

With Names & Numbers a string to return all possible values for the Size (of
business) field would be:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=List&Task=ListSize&Fields=Standard&Lookup=
A string to return surnames starting Smith would be:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=List&Task=ListSurname&Fields=Standard&Lookup=Sm
ith

If an error occurs the Result field returned will be set to a value less than zero
and the ErrorText will contain a corresponding error message.

Assuming no error occurred, you can then process the results returned as
desired.

Example VB code for a List operation to retrieve alias localities:

 Dim details As AFDListData
 Dim retVal As Long
 Static running As Boolean

 ' Prevent corruption of list box from button being clicked twice
 If running Then Exit Sub
 running = True

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Reset Cancel flag
 cancelFlag = False

 ' Set the lookup
 details.Lookup = txtLookup.Text ' Change txtLookup to the postcode or record key you wish to lookup

 ' Carry out the lookup (Can alter the operation to retrieve N&N list items if desired)
 retVal = AFDData(afdFieldSpec, AFD_LIST_ALIAS_LOCALITY, details)

 ' Abort with Message if error or user cancelled

AFD Common API
Desktop Integration Guide – January 2023

 - 106 -

 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 running = False
 Exit Sub
 End If

 ' Now add matching records to the list box
 Do While retVal >= 0
 ' Add the item to the list box with hidden key at the end

.AddItem Trim(details.List)
' Give user the chance to cancel and allow list box to update

 DoEvents
 ' Check if user cancelled
 If cancelFlag Then
 MsgBox "Lookup Cancelled"
 running = False
 Exit Sub
 End If
 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_LIST_ALIAS_LOCALITY, details)
 Loop

 ' Check results have been returned
 If .ListCount = 0 Then
 MsgBox "No Results Found"
 Else
 .ListIndex = 0 ' Select First item in the list
 End If

 End With

 running = False

Example C++ Code For an Address Management Lookup (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 static bool running = false;
 afdListData details;
 char listItem[2055];
 char msgTxt[255];
 long retVal;
 CListBox* listBox;
 MSG msg;

 // Check if we are already running to prevent crossing over items in the listbox
 if (running) return;
 running = true;

 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Replace m_lstResult with the name given to a variable assigned to your list box control for the results
 listBox = &m_lstResult;

AFD Common API
Desktop Integration Guide – January 2023

 - 107 -

 // Clear out any existing items in the list
 listBox->ResetContent();

 // Reset Cancel flag
 cancelFlag = false;

 // Update Data so we can read the lookup variable
 UpdateData(TRUE);

 // Set the lookup
 strcpy(details.Lookup, m_txtLookup); // Change this to the postcode or record key you wish to lookup

 // Carry out the lookup (Can alter the operation to retrieve N&N list items if desired)
 retVal = (afdData)(afdFieldSpec, AFD_LIST_ALIAS_LOCALITY, (char*)&details);

 // Abort with Message if error or user cancelled
 if (retVal < 0) {
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);
 running = false;
 return;
 }

 // Now add matching records to the list box
 while (retVal >= 0) {

// make up list item
strncpy(listItem, details.List, sizeof(details.List));

 listItem[sizeof(details.List)] = '\0';
 // Add the item to the list box
 listBox->AddString(listItem);
 // Give user the chance to cancel and allow list box to update
 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 // Check if user cancelled
 if (cancelFlag) {
 MessageBox("Search Cancelled", "Cancelled", 0);
 return;
 }
 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_LIST_ALIAS_LOCALITY, (char*)&details);
 }

 // Check results have been returned
 if (listBox->GetCount() == 0)
 MessageBox("No Results Found", "Error", 0);
 else {
 listBox->SetCurSel(0); // Select First item in the list

 OnSelchangeLstResult(); // Set this to your list change method to simulate selecting the first list item

 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

AFD Common API
Desktop Integration Guide – January 2023

 - 108 -

 running = false;

5.9. String Utility Functions – Depeciated and Unsupported

These are provided for compatibility with existing applications which may
depend on them but for new developments we would recommend you use
in-built functions which are included with most modern development
environments.

To carry out a string operation you would pass the string to the afddata.pce
URL on the Postcode Everywhere XML server as described in section 5.2.

For example, a valid lookup string for our hosted service to search for
instances of “is” and replace them with “it” in the string “this is a test” would
be as follows:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=String&Task=SearchReplace&Fields=Standard&Searc
h=is&Replace=it&Lookup=this%20is%20a%20test.

The String Utility Tasks supported, and the parameters required are as
follows:

Task Parameters Description
SearchReplace Search

Replace
Lookup

All occurrences in the specified Lookup
field of the string specified in the Search
field are replaced with the string in the
Replace field.

SearchReplaceCas
e

Search
Replace
Lookup

This is the same as SearchReplace but is
case sensitive.

Capitalise Lookup This corrects the capitalisation of the
Lookup field. For example, ‘commercial
STREET’ would become ‘Commercial
Street’.

CleanLine Lookup This cleans the Lookup field by removing
spurious characters that should not be in
an address line, e.g., a trailing comma.

CheckPostcode Lookup This checks if the string specified in the
Lookup field looks like a postcode.

AFD Common API
Desktop Integration Guide – January 2023

 - 109 -

CleanPostcode Lookup This cleans the postcode specified in the
Lookup field to tidy up the postcode
specified.

AbbreviateCounty Lookup This provides the Royal Mail Approved
county abbreviation for the county
specified in the Lookup field if one exists.

The resulting string will be found in the Lookup Field of the single Item which
will be returned. When using the CleanPostcode function the Outcode and
Incode portions of the postcode (portion before and after the space) will
also be available in the separate Outcode and Incode Fields which are
present in the XML returned.

Example VB code for a Search/Replace String Operation:

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim pcFromNode As Object
 Dim dataNode As Object
 Dim itemNodes As Object
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"
 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"
 xmlLocation = xmlLocation + "Data=String&Fields=Standard"

 ' Set the task (see String operations below for options
 xmlLocation = xmlLocation + "&Task=SearchReplace"

 ' Set the Lookup, Search and Replace parameters
 xmlLocation = xmlLocation + "&Lookup=" + txtLookup.Text ' Change txtLookup to your string entry textbox
 xmlLocation = xmlLocation + "&Search=" + txtSearch.Text ' Change txtSearch to your search entry textbox
 xmlLocation = xmlLocation + "&Replace=" + txtReplace.Text ' Change txtReplace to your replace entry textbox

 ' Load the XML from the webserver with the query string
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

AFD Common API
Desktop Integration Guide – January 2023

 - 110 -

 ' Check if PCE returned an error and if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")
 Set itemNodes = root.selectNodes("Item")
 If dataNode Is Nothing or itemNodes Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 If Val(dataNode.Text) < 1 Then
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text ' Show the user the error
 End If
 Exit Sub
 End If

 ' The updated string is held in itemNodes(0).selectSingleNode("Lookup").Text

5.10. Grid Utility Functions – UK Address Management Only

These functions are used to carry out operations related to grid references
and latitude and longitude values. You can convert between GB and Irish
based grid references and also convert to and from latitude and longitude
values. The facility to convert a value in kilometers to miles and vice-versa,
return an approximate grid reference for a location and also calculate the
distance between two geographical locations is also included.

To carry out a grid operation you would pass the grid or latitude and
longitude to the afddata.pce URL on the Postcode Everywhere XML server as
described in section 5.2.

For example, a valid URL string for our hosted service to convert the GB grid
reference 40660, 28650 to latitude and longitude (Irish based grids would
also be returned for it) would be as follows:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Grid&Task=Convert&Fields=Standard&GBGridE=4066
0&GBGridN=28650

AFD Common API
Desktop Integration Guide – January 2023

 - 111 -

The Grid Utility Tasks supported, and the parameters supported are as
follows:

Task Parameters Description
Convert1m
Convert

GBGridE, GBGridN
Or NIGridE, NIGridN
Or Latitude,
Longitude
Or TextualLatitude,
 TextualLongitude
And/Or Miles/Km

Converts a GB or NI based grid reference,
or latitude and longitude value to all
other grid reference types and latitude
and longitude values. The Convert1m
function returns grids to a 1m resolution
(6 digit), whereas Convert returns 5 digit
grids.

LookupLocation1
m
LookupLocation

Lookup Looks up a town, locality, or partial
postcode specified in the Lookup field
and provides an approximate grid
reference and latitude and longitude
values for the location if a match is found.
Multiple matches may be returned if the
location is ambiguous. The
LookupLocation1m function returns grids
to a 1m resolution (6 digit), whereas
LookupLocation returns 5 digit grids.

Distance1m
Distance

GBGridE, GBGridN
Or NIGridE, NIGridN
Or Latitude,
Longitude

AND:

GBGridEFrom,
GBGridNFrom
Or NIGridEFrom,
 NIGridNFrom
Or LatitudeFrom,
 LongitudeFrom

Calculates the distance between a pair
of grid references or latitude and
longitude values specified. You will need
to set a grid or latitude and longitude
value in both the normal fields and those
prefixed with “From” to find the distance
in both Miles and Km. The Distance1m
function returns grids to a 1m resolution
(6 digit), whereas Distance returns 5 digit
grids.

You can then read the resulting grid reference, latitude and longitude values,
or Km and Miles values as appropriate for the operation you have carried
out and the data that you require.

Example VB code for converting a GB based grid reference:

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim pcFromNode As Object

AFD Common API
Desktop Integration Guide – January 2023

 - 112 -

 Dim dataNode As Object
 Dim itemNodes As Object
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"
 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"
 xmlLocation = xmlLocation + "Data=Grid&Fields=Standard"

 ' Set the task (see Grid operations below for options
 xmlLocation = xmlLocation + "&Task=Convert1m"

 ' Set the GBGridE and GBGridN parameters
 xmlLocation = xmlLocation + "&GBGridE=406600" ' Change 406600 to the grid easting value you wish to convert
 xmlLocation = xmlLocation + "&GBGridN=286500" ' Change 286500 to the grid northing value you wish to conver
 ' Load the XML from the webserver with the query string
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

 ' Check if PCE returned an error and if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")
 Set itemNodes = root.selectNodes("Item")
 If dataNode Is Nothing or itemNodes Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 If Val(dataNode.Text) < 1 Then
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text ' Show the user the error
 End If
 Exit Sub
 End If

 ' Other elements of details hold converted values, e.g.
 ' Latitude is held in itemNodes(0).selectSingleNode("Latitude").Text
 ' Longitude is held in itemNodes(0).selectSingleNode("Longitude").Text

 ' Grid operations, set Task to one of the following:

AFD Common API
Desktop Integration Guide – January 2023

 - 113 -

 ' Convert1m - Set the GB Grid Reference, NI Grid Reference, Latitude or Longitude values and the rest of the
properites will be filled in giving conversions for any of these items to any other. Can also convert km to miles
and vice-versa.
 ' LookupLocation1m - Set the lookup property to a location name (e.g. Locality or Town) and a grid reference
approximation will be returned if matched.
 ' Distance1m - Set a grid reference or latitude and longitude values in both the standard fields and the fields
prefixed with From and this will calculate the distance between those two points.

5.11. Email Utility Function – UK Address Management Only

This function is used to validate the format of an email address is correct
and that the domain specified has a valid mail server registered for it.

To carry out an email operation you would pass the email address to the
afddata.pce URL on the Postcode Everywhere XML server as described in
section 5.2.

For example, a valid URL string for our hosted service to validate the email
addresss support@afd.co.uk would be as follows:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Email&Task=Full&Fields=Standard&Email=support@a
fd.co.uk

The Email Utility Tasks supported, and the required parameter is as follows:

Task Parameter Description
Full Email Full email validation including live

domain lookup
Format Email Validate email address format is correct

only
TLD Email Validate email format is correct and the

top level domain exists
Local Email Validate email format, top level domain

and for well known domains carry out

The function will return a result >=0 if the email address is valid.

Example VB code for converting a GB based grid reference:

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim pcFromNode As Object

AFD Common API
Desktop Integration Guide – January 2023

 - 114 -

 Dim dataNode As Object
 Dim itemNodes As Object
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"
 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"
 xmlLocation = xmlLocation + "Data=Email&Fields=Standard"

 ' Set the task (see Email operations below for options
 xmlLocation = xmlLocation + "&Task=Full"

 ' Set the Email parameter
 xmlLocation = xmlLocation + "&Email=support@afd.co.uk" ' Change support@afd.co.uk to the email address you
wish to validate
 ' Load the XML from the webserver with the query string
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

 ' Check if PCE returned an error and if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")

 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 If Val(dataNode.Text) < 1 Then
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text ' Show the user the error
 End If
 Exit Sub
 Else
 Msgbox “Email Address Valid”
 End If

 ' Email operations, set Task to one of the following:
 ' Full - Full email validation including live domain lookup
 ' Format - Validate email addres format is correct only
 ' TLD - Validate email format is correct and the top level domain exists
 ' Local - Validate email format, top level domain and for well known domains carry out additional local part
checks

AFD Common API
Desktop Integration Guide – January 2023

 - 115 -

5.12. Clean Function – UK Address Management Only

Requires a Refiner API License

The clean function allows an address, for example from a database, to be
cleaned, i.e., where possible matched to Postcode Plus and therefore given
a correct deliverable address.

To clean an address, you would pass a query string to the afddata.pce URL
on the Postcode Everywhere XML server as described in section 5.2. You
should add a parameter for address fields specifying the address you wish
to clean. These do not need to match up to the actual fields, for example if
you have Address Line 1, Address Line 2, Address Line 3 and Postcode in your
database you could set these to Property, Street, Locality and Postcode fields
parameters and they will be cleaned and returned in the correct named
fields when matched. Note that if you set any non-address fields they will
be ignored.

For example, a valid lookup string for our hosted service to clean the address
“276c, Roton Park Road, Roton Park, Warwikshire, B16 6DE” would be:

http://pce.afd.co.uk/afddata.pce?Serial=000000&Password=PASSWORD&U
serID=MyApp&Data=Address&Task=Clean&Fields=Standard&Property=276
c&Street=Roton%20Park%20Road&Town=Roton%20Park&PostalCounty=Wa
rwikshire&Postcode=B16%206DE

The Result field returned will be set to a value less than zero in the case where
an address cannot be fully matched. This could be because the address
was unmatchable, International, or an ambiguous result was found (see
Section 4.1.9 for details of these return codes). An address will still be
returned as this will include the address with Field Placement correction
which you can use if you desire.

Where the Result field contains a positive value (greater than zero) this
means that the address has been uniquely matched. You may still like to
examine the return value as this will give details as to the level to which the
address was matched (see Section 4.1.9 for details of these return codes).

AFD Common API
Desktop Integration Guide – January 2023

 - 116 -

Many other fields are also avaliable with additional (non-address data)
which you may require.

In the case of an ambiguous or suggested result (return code is -102, -103,
or -104) the first address returned from the function will be the original
address with field placement. For non-batch processes you may wish to
present a list of addresses for the user to choose from, as these will all be
contained in the returned XML. However, you cannot pass the keys back to
the API on record selection through Postcode Everywhere as these are not
permanent records and as such will not be available if looked up on a
different thread or after another lookup. It is therefore important to read
records in and store them from the XML following the lookup if you wish to
do this.

Example VB code for an Address Management Clean:

 ' Declare XML Objects and variables
 Dim xmlDoc As Object
 Dim root As Object
 Dim dataNode As Object
 Dim itemNodes As Object
 Dim listNode As Object
 Dim keyNode As Object
 Dim resultCode As Long
 Dim xmlLocation As String

 ' Initialise the Microsoft XML Document Object Model
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.async = False

 ' Replace lstResult with the name of your list box if you wish to display ambiguous results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Build up the XML query string
 xmlLocation = AFD_SERVER + "/afddata.pce?
 xmlLocation = xmlLocation + "Serial=" + AFD_SERIAL_NUMBER + "&"
 xmlLocation = xmlLocation + "Password=" + AFD_PASSWORD + "&"
 xmlLocation = xmlLocation + "UserID=" + AFD_USER_ID + "&"
 xmlLocation = xmlLocation + "Data=Address&Task=Clean&Fields=Standard

 ' Set the parameters to specify the address that you wish to clean
 xmlLocation = xmlLocation + "&Organisation=" + txtSearchOrganisation.Text
 xmlLocation = xmlLocation + "&Property=" + txtSearchProperty.Text
 xmlLocation = xmlLocation + "&Street=" + txtSearchStreet.Text
 xmlLocation = xmlLocation + "&Locality=" + txtSearchLocality.Text
 xmlLocation = xmlLocation + "&Town=" + txtSearchTown.Text
 xmlLocation = xmlLocation + "&Postcode=" + txtSearchPostcode.Text

AFD Common API
Desktop Integration Guide – January 2023

 - 117 -

 ' Load the XML from the webserver with the query string to clean the address
 xmlDoc.Load (xmlLocation)

 ' Check for any XML Parser error
 If xmlDoc.parseError.errorCode < 0 Then
 Msgbox "Error: " & xmlDoc.parseError.reason & vbCrLf & "Microsoft.XMLDOM Error Code: " &
Str(xmlDoc.parseError.errorCode)
 Exit Sub
 End If

 ' Check if the document is valid
 Set root = xmlDoc.documentElement
 Set dataNode = root.selectSingleNode("Result")
 Set itemNodes = root.selectNodes("Item")
 If dataNode Is Nothing or itemNodes Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Exit Sub
 End If
 resultCode = Val(dataNode.Text)

 ' Show the resulting address
 Set dataNode = itemNodes(0).selectSingleNode("Name")
 If Not (dataNode Is Nothing) Then txtName.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Organisation")
 If Not (dataNode Is Nothing) Then txtOrganisation.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Property")
 If Not (dataNode Is Nothing) Then txtProperty.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Street")
 If Not (dataNode Is Nothing) Then txtStreet.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Locality")
 If Not (dataNode Is Nothing) Then txtLocality.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Town")
 If Not (dataNode Is Nothing) Then txtTown.Text = dataNode.Text
 Set dataNode = itemNodes(0).selectSingleNode("Postcode")
 If Not (dataNode Is Nothing) Then txtPostcode.Text = dataNode.Text

 ' Show cleaning status
 Set dataNode = root.selectSingleNode("ErrorText")
 If dataNode Is Nothing Then
 Msgbox "Invalid PCE XML Document"
 Else
 Msgbox dataNode.Text
 End If

 End With

While the default is fine for most users, If you wish to set any of the advanced
cleaning options you can do this by adding those options to the Task string
after the word Clean, e.g., Task=Clean0AS.

The options supported are as follows: (Please see the main Refiner manual
for more detail regarding each of these options)

AFD Common API
Desktop Integration Guide – January 2023

 - 118 -

0 - Specifies the default cleaning mode where the address is fully cleaned

1 - Specifies that the input record will only be cleaned if the address can be
verified against the supplied postcode.

2 – Specifies that only full matches should be returned

3 – Uses Attach Mode only (fields are returned based on the postcode)

N – Use non-separated fields (Useful for databases where fields are not
seperated, e.g., the street and town are entered on the same line with no
comma etc. between them)

A – No Ambiguous Matches (do not return list of addresses to choose from
if the address cannot be uniquely matched)

S – No Suggested Matches (do not return a suggested match along with the
original address if the address cannot be matched but there is a possible
unique match)

U – Assume the Postcode is correct (this option allows less reliable matching
on the assumption that the postcode is correct if the address cannot
otherwise be verified. In Attach mode this allows a property and postcode
to be matched)

T – Give Ambiguous Matches in Preference to Street Level (if an address
cannot be uniquely matched to an individual property the original property
information is normally retained, this option gives the ambiguous addresses
to choose from instead).

P – Match PO Box Last (Some PO Box addresses contain some Street address
information too even though the address is meant for a PO Box. If you wish
Refiner to try and match it to a street address first then select this option).

L – Retain Alias Localities (If the address is matched using an alias locality
this will be retained in the address – Alias Localities are not normally retained
as they are not required for the address to be deliverable).

AFD Common API
Desktop Integration Guide – January 2023

 - 119 -

O – Do not move data to Organisation (Normally Refiner will put additional
address data for street level only matches in the property field unless they
look like an Organisation or there is already a property. Specifying this
option ensures Refiner never returns such data in the Organisation field -
useful if you are not going to use the Organisation field returned).

W – Do not use the Default DPS (if an address is not matched to a full Delivery
Point Record, a default of 9Z is assigned which can still be used for printing
bar codes etc., if you do not wish this to be used then use this option)

F – Do not use Field Placement (By default if an address cannot be matched
Refiner attempts to format the address correctly on return, if you would
rather it was left “as-is” then use this option.

AFD Common API
Desktop Integration Guide – January 2023

 - 120 -

6. Other Features

6.1. Selecting TraceMaster Datasets

AFD Names & Numbers TraceMaster includes historic datasets for Address
Management Data going back to 1998. These provide previous year’s
electoral rolls and business data. Lookup and Search operations function as
described in sections 4.2 and 4.3 of this documentation function with
TraceMaster in the same way as with all other products.

By default, these operations will operate using the Current (latest) dataset.
However, to use a historic dataset simply specify the dataset name (year)
in the DataSet Field of the AFDData structure, type or XML parameter. The
product will automatically carry out your Lookup or Search operation using
the specified dataset.

To retrieve records from all datasets, with the standard API, you can call the
AFDData function in a loop specifying each dataset in turn. If you are using
the PostcodeEverywhere XML server you can simply repeat your lookup or
search operation with a different dataset parameter each time.

6.2. Determining the Product in Use

When integrating with Address Management products the same code will
work with any of our Address Management products (AFD Postcode, AFD
Postcode Plotter, AFD Postcode Plus, AFD Names & Numbers and AFD Names
& Numbers TraceMaster).

It is not normally necessary to determine which product has been used as
you can integrate with one, e.g., Names & Numbers and the user can use
any of our address management products – they will just have less data
returned depending on the product they have. However, if for any reason,
such as disabling/enabling features of your product - you can use the
Product field if you wish to determine which product the user has and that
has been used by the Common API.

Note that in the case of multiple address management products being
installed the AFD Common API will use the highest-level product available.

AFD Common API
Desktop Integration Guide – January 2023

 - 121 -

For example, AFD Names & Numbers would be used in preference to AFD
Postcode.

The Product field will contain one of the following values depending on the
product being used:

• AFD Postcode
• AFD Postcode Plotter
• AFD Postcode Plus
• AFD Names & Numbers
• AFD Names & Numbers TraceMaster

Note that when carrying out a BankFinder operation AFD BankFinder will
always be the product name returned.

6.3. Using Welsh Data in Postcode Plus

Welsh data is available for Postcode Plus on request. It works alongside the
existing English language PAF data and provides Welsh language
equivalents for streets, localities and towns in Wales where such equivalents
are available.

To obtain address details using the Welsh variant simply set the DataSet
property of the address structure, or DataSet parameter when using XML, to
“Welsh” prior to making your call to the API. Any operation including lookup’s,
searches and retrieving records can be done using either dataset. Note that
the data returned when using either dataset will be the same if no Welsh
language alternative is available.

You can also retrieve the same record in both Welsh and English simply by
calling the API to retrieve the record once with the DataSet property set to
an empty string (or English if you prefer) and once set to “Welsh”. For
example, if you carry out a lookup for a postcode, as specified in Section 4.2
of this documentation, and add the items to a list box, when the user selects
an item from the list you can retrieve the same address in both Welsh and
English language variants by using the List Fetch operation described in

AFD Common API
Desktop Integration Guide – January 2023

 - 122 -

Section 4.4 twice for the same record, once with the DataSet parameter set
to Welsh and once with it not set.

Example VB code to fetch an item selected in the list in both English and Welsh:

 Dim details As AFDAddressData
 Dim welshDetails As AFDAddressData
 Dim pos As Long, retVal As Long

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Check a valid item is selected
 If .ListIndex = -1 Then
 MsgBox "No Item Selected"
 Exit Sub
 End If

 ' Set DLL parameters to retrieve the selected record
 details.Key = Mid(lstResult, 513) ' Replace lstResult with the name of your list box for the results

 ' We will want the same record in Welsh too
 welshDetails.Key = details.Key

 ' Finished with the list box
 End With

 ' Set DataSet to Welsh for welshDetails
 details.DataSet = ""
 welshDetails.DataSet = "Welsh"

 ' Carry out the lookup for English language data and then Welsh language data
 retVal = AFDData(afdFieldSpec, AFD_RETRIEVE_RECORD, details)
 retVal = AFDData(afdFieldSpec, AFD_RETRIEVE_RECORD, welshDetails)

 ' Abort with Message if error
 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 Exit Sub
 End If

 ' Now Assign required fields to your application
 ' These are any of the members of the details. type (Use Trim to remove whitespace)
 txtEnglishName.Text = Trim(details.PostalCounty)
 txtEnglishOrganisation.Text = Trim(details.AbbreviatedPostalCounty)
 txtEnglishProperty.Text = Trim(details.OptionalCounty)
 txtEnglishStreet.Text = Trim(details.AbbreviatedOptionalCounty)
 txtEnglishLocality.Text = Trim(details.TraditionalCounty)
 txtEnglishTown.Text = Trim(details.AdministrativeCounty)
 txtEnglishPostcode.Text = Trim(details.Postcode)
 txtWelshName.Text = Trim(welshDetails.PostalCounty)
 txtWelshOrganisation.Text = Trim(welshDetails.AbbreviatedPostalCounty)

AFD Common API
Desktop Integration Guide – January 2023

 - 123 -

 txtWelshProperty.Text = Trim(welshDetails.OptionalCounty)
 txtWelshStreet.Text = Trim(welshDetails.AbbreviatedOptionalCounty)
 txtWelshLocality.Text = Trim(welshDetails.TraditionalCounty)
 txtWelshTown.Text = Trim(welshDetails.AdministrativeCounty)
 txtWelshPostcode.Text = Trim(welshDetails.Postcode)

Example C++ code to fetch an item selected in the list for Address Management products (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 afdAddressData details;
 afdAddressData welshDetails;
 bool foundSel = false;
 long retVal;
 CListBox* listBox;
 char lstStr[2055];
 char msgTxt[255];

 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

 // Replace m_lstResult with the name given to a variable assigned to your list box control for the results
 listBox = &m_lstResult;

 // Set DLL parameters to retrieve the selected record
 listBox->GetText(listBox->GetCurSel(), lstStr);
 strncpy(details.Key, lstStr + sizeof(details.List), sizeof(details.Key));

 // We will want the same record in Welsh too
 strncpy(welshDetails.Key, details.Key, sizeof(details.Key));

 ' Set DataSet to Welsh for welshDetails
 strcpy(details.DataSet, "");
 strcpy(welshDetails.DataSet, "Welsh");

 // Carry out the lookup for English language data and then Welsh language data
 retVal = (afdData)(afdFieldSpec, AFD_RETRIEVE_RECORD, (char*)&details);
 retVal = (afdData)(afdFieldSpec, AFD_RETRIEVE_RECORD, (char*)&welshDetails);

 // Abort with Message if error
 if (retVal < 0) {
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);
 return;
 }

 // Now Assign required fields to your application
 // These are any of the members of the details. structure
 m_txtEnglishName = details.Name;
 m_txtEnglishOrganisation = details.Organisation;
 m_txtEnglishProperty = details.Property;
 m_txtEnglishStreet = details.Street;
 m_txtEnglishLocality = details.Locality;

AFD Common API
Desktop Integration Guide – January 2023

 - 124 -

 m_txtEnglishTown = details.Town;
 m_txtEnglishPostcode = details.Postcode;
 m_txtWelshName = welshDetails.Name;
 m_txtWelshOrganisation = welshDetails.Organisation;
 m_txtWelshProperty = welshDetails.Property;
 m_txtWelshStreet = welshDetails.Street;
 m_txtWelshLocality = welshDetails.Locality;
 m_txtWelshTown = welshDetails.Town;
 m_txtWelshPostcode = welshDetails.Postcode;

 // Update Fields
 UpdateData(FALSE);

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

6.4. DX Member Data

DX Members can have access to DX data from within Postcode Plus and the
Common API. This enables you to lookup and search for DX addresses just
as you can do with Royal Mail postal addresses. Uniquely, the Common API
also allows you to easily identify DX addresses associated with a PAF
address to route your mail through a DX member's box wherever possible
resulting in savings over Royal Mail.

If you run the Wizard to generate a code sample with DX data installed
declarations will be included for the DXNumber (10 characters), DXExchange
(30 characters) and DXProfession (30 Characters). You can also manually
add these to your field specification string and structure. Postcode
Everywhere users will automatically have these fields returned in the XML if
they have the DX data installed.

Fast-find functionality works with DX data as well as postal data. For
example, as well as looking up a postcode you can also carry out a fast-find
for a DX number and searching for an organisaiton name with fast-find will
search both postal and DX data. This allows you to easily combine your
lookup’s. When searching you can either search the standard postal fields
or specify the DX Number, organisation, exchange or profession to search
theDX data instead. (If you only want to specify one set of search fields in
your application then placing DX followed by the DX number in the normal

AFD Common API
Desktop Integration Guide – January 2023

 - 125 -

street field will work too – town can then be used to specify the exchange if
desired).

When results are returned following any lookup or search if the address is
also a DX Member the DXNumber, DXExchange and DXProfession fields will
also be returned to indicate this. You can format a DX address as follows for
printing:

<Organisation> e.g. Pannone LLP
DX <DXNumber> DX 14314
<DXExchange> MANCHESTER

See Appendix K for a current list of available DX Professions and Exchanges.

6.5. International Data

Customers signed up to use our International data service can lookup and
search for international addresses in exactly the same way as you do for UK
based addresses. The only difference in normal operation is the need to
specify the Country or CountryISO code of the country that you wish to use
in all lookup, search and record retrieval operations. A full list of these codes
is given in Appendix L. of this manual.

If you are using any of our example applications generated from the API
Wizard, simply add a Country field and set the Country property for all calls
to the DLL to the contents of this field to try out International addressing with
the example.

6.5.1. Enabling International Support

If you are using our hosted Postcode Internet Online service and have signed
up for our International data service then you will simply need to add a
Country or CountryISO field to specify the country to use for each lookup or
search, and the International data will work with your existing integration.

If you are using our Standard API implementation (i.e., calling afddata.dll or
afddata64.dll) or hosting your own Postcode Everywhere server then you will

AFD Common API
Desktop Integration Guide – January 2023

 - 126 -

need to have specified authentication information (serial number and
password) for our server as these requests must be passed through to our
hosted server to be processed:

When using the standard API this is done by adding the
{serial:password:userid} string to the options portion of your field
specification string. The API Wizard can generate this for you if you fill out
the required information when running the wizard, or you can see the
documentation for this string in section 4.1.2 of this manual.

When using Postcode Everywhere hosted on your own server you simply
need to ensure you have specified the &SerialNo= and &Password= options
on the URL string for your request to your server so that they can be passed
onto ours in the case of International addresses.

6.5.2. Making use of the data returned

If you have opted to use Standard, Raw PAF, or BS7666 fields the data will be
returned in the same fields as those for the UK (including county in some
cases) which you can use to store the data in your database in the same
format as you do for UK addresses.

However, when it comes to generating an address label, you should note
that the formatting rules for addresses vary from country to country (for
example in many Western European countries the post/zip code comes
before the town on the same line). Unless you have your own printing or
formatting routines for the country in question, you may therefore actually
prefer to use our International address format which provides both the
consistuent address fields (broadly the same as Raw PAF fields but also
adding the Principality, Region and Cedex which is relevant to some
international addresses) as well as address label formatted fields (address1
through to address7). This enables you to both have a structure ideal for
data storage and for label formatting.

If you need to store addresses in a more UK based format, but then need to
format them for printing you can easily do so by carrying out a search
operation specifying the address data with the International field type to

AFD Common API
Desktop Integration Guide – January 2023

 - 127 -

obtain the address for printing at the time that you wish to generate an
address label.

6.5.3. Obtaining a list of countries

You may well wish (using the list of countries in Appendix L) populate a drop-
down list of countries in your application for the user to choose from which
includes only those countries that you are interested in using. However, if
you wish to have a complete list you can do so programmatically by calling
the Country List function. Details of doing this is given in sections 4.4 (for the
Standard API) and section 5.8 (for Postcode Everywhere) of this manual.

6.5.4. Notes regarding International addressing

It is important to note that the standards regarding what is an acceptable
address vary widely from country to country as do the levels of data which
are available. For example, while one country may have full address data
from Organisation down, another may only be at street or even locality level.
So, you must accommodate for different levels of data coming back and
therefore differing amounts of manual entry which may be required by users
of your software to provide a complete address.

AFD Common API
Desktop Integration Guide – January 2023

 - 128 -

7. Appendices

Appendix A. Address Management Product Fields

This currently includes Postcode, Plotter, Postcode Plus, Names & Numbers
(including TraceMaster), and ZipAddress.

◼ Field returned by this product and fully searchable.
 Field returned by this product, but not searchable.

Note: The API Wizard will add one to the default size for development
environments that normally use null terminated strings, e.g., C++ and C# to
accommodate the null terminator.

Also note that the alternative address formats provided do share some of
the same fields where their data is identical, but you should not mix and
match other fields between the different formats as this could lead to
address corruption. For example, with Standard Address Fields the Street or
Locality field could include a street number, whereas with Raw PAF Fields the
number would be in the separate Number field.

Field Name

Defaul
t
Size

Description

Po
st

co
de

 Pl

ot
te

r

Po
st

co
de

 P
lu

s

N
am

es
 &

 N
um

be
rs

Zi
pA

dd
re

ss

General Fields
Lookup 255 Specify postcode (or zipcode) and

fast-find lookup string’s here for
lookup operations.

◼ ◼ ◼ ◼ ◼

Key 255 Provides a key which can be used to
easily retrieve the record again, e.g.
when a user clicks on an item in the
list box.

◼ ◼ ◼ ◼ ◼

List 512 Provides a list item formatted to be
added to a list box for this record.

    

AFD Common API
Desktop Integration Guide – January 2023

 - 129 -

Product 40 Indicates the product name used
[10]

    

Occupant Fields

Name 120 Full name (includes title, first name,
middle initial and surname).

 

Gender 6 The gender (M or F) of the resident if
known.

 ◼

Forename 30 The first name of the resident ◼
MiddleInitial 6 The middle initiate of the resident. ◼
Surname 30 The surname/last name of the

resident.
 ◼

OnEditedRoll 6 Indicates if the resident is on the
edited electoral roll (i.e., they have
not opted out). Set to Y if they are
on the Edited Roll, N if not, blank for
Organisation and other records). To
search set to #Y to return only
records on the electoral roll, #N only
for those not on the electoral roll or
!N for all records including
Organisations but excluding those
not on the Edited Roll.

 ◼

DateOfBirth 10 The residents date of birth if known
(electoral roll attainers in the last 10
years only).

 ◼

Residency 6 Gives time in years that the
occupant has lived at this address.

 ◼

HouseholdCompositio
n

106 Describes the household
composition of the selected
address [6]

 ◼

Standard Address Fields (Formatted as an address would appear on an envelope)
Organisation 120 Full business name (includes any

department)
 ◼ ◼ ◼

Property 120 Property (building-includes any
sub-building).

 ◼ ◼ ◼

Street 120 Delivery Street (includes any sub-
street)

◼ ◼ ◼ ◼ ◼

Locality 70 Locality (sometimes a village name
– in ZipAddress used for
Urbanization)

◼ ◼ ◼ ◼ ◼

Town 30 Postal Delivery Town (or City) ◼ ◼ ◼ ◼ ◼

Postcode 10 The Royal Mail Postcode for this
address (or ZipCode)

◼ ◼ ◼ ◼ ◼

AFD Common API
Desktop Integration Guide – January 2023

 - 130 -

Raw PAF Fields (Formatted closer to how they appear on Raw PAF, useful if your
database stores fields this way)
OrganisationName 60 Business Name ◼ ◼ ◼

Department 60 Department Name  ◼
Sub Building 60 Sub Building Name ◼ ◼
Building 60 Building Name ◼ ◼ ◼

Number 10 House Number ◼ ◼ ◼

DependentThoroughf
are

60 Sub-Street Name ◼ ◼ ◼ ◼

Thoroughfare 60 Street Name ◼ ◼ ◼ ◼ ◼

DoubleDependentLoc
ality

35 Sub-Locality Name ◼ ◼ ◼ ◼

DependentLocality 35 Locality Name (Urbanization in
ZipAddress)

◼ ◼ ◼ ◼ ◼

Town 30 Postal Delivery Town (City) ◼ ◼ ◼ ◼ ◼

Postcode 10 The Royal Mail Postcode for this
address (or Zipcode)

◼ ◼ ◼ ◼ ◼

BS7666 Fields (Fields to help provide addresses which conform to BS 7666-5:2006)
Identifier 8 Provides a unique identifier for the

address (the Royal Mail UDPRN)
 ◼ ◼

BuildDate 10 Provides the build date, which can
be used as the start date, entry
date, and update date fields for
BS7666.

   

Administrator 20 Provides the administrator of the
gazetteer (AFD).

   

Language 5 Provides the language (ENG)   

Department 60 The name of a department within
an organization where required.

 ◼ ◼

Organization 60 The Organization Name ◼ ◼ ◼

SubUnit 60 Sub-Unit of a building where
needed

 ◼ ◼

BuildingName 60 Building Name where present ◼ ◼ ◼

BuildingNumber 10 Building Number, including 17A, 17-
19, etc.

 ◼ ◼ ◼

SubStreet 60 Sub-Street where needed ◼ ◼
DeliveryStreet 60 Designated Street Name ◼ ◼ ◼ ◼ ◼

SubLocality 60 Sub-Locality where required ◼ ◼ ◼ ◼
DeliveryLocality 60 Locality name (or Urbanization) ◼ ◼ ◼ ◼ ◼

DeliveryTown 30 Postal Town name (or City) ◼ ◼ ◼ ◼ ◼

Code 10 The Postcode (or ZipCode) ◼ ◼ ◼ ◼ ◼

AFD Common API
Desktop Integration Guide – January 2023

 - 131 -

County Fields (Counties are Optional for addressing and AFD provide different types of
county to meet your needs – all supply State Abbreviation in ZipAddress)
Postal County 30 Royal Mail supplied postal county ◼ ◼ ◼ ◼ ◼

AbbreviatedPostalCo
unty

30 Royal Mail approved abbreviation is
used where available for the postal
county

◼ ◼ ◼ ◼ ◼

OptionalCounty 30 Postal counties including optional
ones for most addresses which
would otherwise not have a county
name.

◼ ◼ ◼ ◼ ◼

AbbreviatedOptional
County

30 Royal Mail approved
abbreviation is used where
available for the optional
county

◼ ◼ ◼ ◼ ◼

TraditionalCounty 30 The traditional county name
for this postcode

◼ ◼  ◼ ◼

AdministrativeCounty 30 The administrative county name for
this postcode

◼ ◼  ◼ ◼

Alternative Postcode Fields (Can be used in-place of the Postcode field to provide it as
separate parts)
Outcode 4 The Outcode portion of the

Postcode (the portion before the
space)

◼ ◼ ◼ ◼

Incode 3 The Incode portion of the Postcode
(the portion after the space).

◼ ◼ ◼ ◼

Additional Postal Data Fields
DPS 2 The Delivery Point Suffix which along

with the postcode uniquely
identifies the letterbox.

  ◼

PostcodeFrom 8 Used with Postcode field to provide
a range for searching. Also returns
any changed postcode from a
lookup.

  ◼ ◼

PostcodeType 6 L for Large User Postcode, S for Small
User.

   ◼

MailsortCode 5 Used for obtaining bulk mail
discounts.

   ◼

UDPRN 8 Royal Mail Unique Delivery Point
Reference Number assigned to this
letter box.

 ◼ ◼

JustBuilt 10 AFDJustBuilt - Contains the date of
inclusion on PAF for properties

 ◼ ◼

AFD Common API
Desktop Integration Guide – January 2023

 - 132 -

thought to be recently built. The
date is stored numerically in
descending format in the form
YYYYMMDD. YYYY is the year, MM is
the month and DD is the day. For
example, 20080304 is 04/03/2008.

USA Format Address Fields
Recipient 120 The Recipient name were held

(usually Organisation).
 ◼ ◼ ◼

Secondary 120 Secondary address details (usually
a building name or apartment)

 ◼ ◼ ◼

Primary 120 Primary address details (usually a
street number and name)

◼ ◼ ◼ ◼ ◼

Urbanization 60 Urbanization (applies only to Puerto
Rico – returns Locality for UK
addresses)

◼ ◼ ◼ ◼ ◼

City 30 Official City name for the address
(Town for UK addresses)

◼ ◼ ◼ ◼ ◼

State 30 State Abbreviation (e.g., WA, returns
Postal County for UK addresses)

◼ ◼ ◼ ◼ ◼

ZipCode 20 Full Zip+4 Code for this address
(Postcode for UK addresses)

◼ ◼ ◼ ◼ ◼

International Address Fields
Country 30 Specifies the name of the country to

search for when using International
data and returns the name of the
country that the result returned was
for.

◼ ◼ ◼ ◼ ◼

CountryISO 3 Specifies the ISO code of the
country to search for when using
International data and returns the
code for the country the result
returned was for.

◼ ◼ ◼ ◼ ◼

Address1…7 120 These fields provide a formatted
address ready to print on an
address label and so eliminate the
need to format the address
afterwards (as the rules differ from
country to country).

◼ ◼ ◼ ◼ ◼

Principality 60 This is the principality for the
address if applicable.

◼ ◼ ◼ ◼

Region 60 This is the region for the address if
applicable.

◼ ◼ ◼ ◼

AFD Common API
Desktop Integration Guide – January 2023

 - 133 -

Cedex 60 This specifies the Cedex if
applicable to the address.

◼ ◼ ◼ ◼

Phone Number Related Fields
Phone 20 STD Code or Phone Number ◼

[3
]

◼

[3
]

◼

[3
]

◼

Geographical Fields
GridE 10 Grid Easting as a 6-digit reference  ◼ ◼
GridN 10 Grid Northing as a 6/7-digit

reference
  ◼ ◼

Latitude 10 Latitude representation of Grid
Reference in Decimal Format
(WGS84)

  ◼ ◼

GBGridE 10 UK Based Grid Easting as a 6-digit
reference. Always returns the UK
based grid even for Northern Ireland
addresses.

  ◼ ◼

GBGridN 10 UK Based Grid Northing as a 6/7-
digit reference.

  ◼ ◼

NIGridE 10 Irish Grid Based Grid Easting as a 6-
digit reference. Always returns the
Irish base grid even for mainland UK
addresses.

  ◼ ◼

NIGridN 10 Irish Grid Based Grid Northing as a
6/7-digit reference.

  ◼ ◼

Longitude 10 Longitude representation of Grid
Reference in Decimal Format
(WGS84)

  ◼ ◼

Miles 6 Distance from supplied grid
reference

 ◼ ◼

Km 6 Distance from supplied grid
reference

 ◼ ◼

UrbanRuralCode 2 Provides a code which indicates if
an area is mainly urban or rural and
how sparsely populated those
areas are. [11]

  ◼

UrbanRuralName 60 Provides a description which goes
along with the UrbanRuralCode.

  ◼

SOALower 9 Lower level Super Output Area (Data
Zone in Scotland, Super Output Area
in Northern Ireland)

  ◼

SOAMiddle 9 Middle level Super Output Area
(Intermediate Geography in

  ◼

AFD Common API
Desktop Integration Guide – January 2023

 - 134 -

Scotland, not applicable for
Northern Ireland).

SubCountryName 20 Provides the devolved or non-UK
country name (e.g., England,
Scotland, Wales etc.)

  ◼

Administrative / Electoral Division Fields
WardCode 9 Code identifying the electoral ward

for this postcode
  ◼

WardName 50 Name identifying the electoral ward
for this postcode

  ◼

AuthorityCode 9 Local/Unitary Authority for this
Postcode (same as the start of the
ward code).

  ◼

Authority 50 Local / Unitary Authority for this
postcode

  ◼

ConstituencyCode 9 Parliamentary Constituency Code
for this postcode

  ◼

Constituency 50 Parliamentary Constituency for this
postcode

  ◼

DevolvedConstituenc
yCode

9 Devolved Constituency Code for
this postcode (currently covers
Scotland)

  ◼

DevolvedConstituenc
yName

50 Devolved Constituency Name for
this postcode (currently covers
Scotland)

  ◼

EERCode 9 Code identifying the European
Electoral Region for this postcode

  ◼

EERName 40 Name identifying the European
Electoral Region for this postcode

  ◼

LEACode 3 Code identifying the Local
Education Authority for this
postcode

  ◼

LEAName 50 Name identifying the Local
Education Authority for this
postcode

  ◼

TVRegion 30 ISBA TV Region (not TV Company)  ◼

Postcode Level Property Indicator Fields
Occupancy 6 Indication of the type of occupants

of properties found on the selected
postcode [4]

   ◼

OccupancyDescriptio
n

30 Description matching the
Occupancy [4]

   

AFD Common API
Desktop Integration Guide – January 2023

 - 135 -

AddressType 6 Indication of the type of property
level data to capture to have the full
address for a property on the
selected postcode. [5]

   ◼

AddressTypeDescripti
on

55 Description matching the Address
Type [5]

   

NHS Fields
NHSCode 6 National Health Service Area Code  ◼
NHSName 50 National Health Service Area Name  ◼
PCTCode 9 National Health Service Clinical

Commisioning Group Code for
England (Local Health Board Code
in Wales, Community Health
Partnership in Scotland, Local
Commissioning Group in Northern
Ireland, Primary Healthcare
Directorate in the Isle of Man)

  ◼

PCTName 50 Name matching the PCT Code field  ◼

Censation Data Fields (See Main product Manual for full details of Censation Codes and
there meaning).
CensationCode 10 Censation Code assigned to this

Postcode

   ◼

CensationLabel 50 Provides a handle for the Censation
Code

   ◼

Affluence 30 Affluence description    ◼
Lifestage 100 LifeStage description    ◼
AdditionalCensusInfo 200 Additional information from the

Census.

   ◼

Additional Organisation Information Fields
Business 100 Provides a description of the type of

business
 ◼

SICCode 10 Standard Industry Classification
Code for an organisation record.

 ◼

Size 6 Gives an indication of the number of
employees of an organisation at
this particular office. [7]

 ◼

LocationType 6 The type of Business Location, e.g.,
Head Office or Branch Office

 ◼

BranchCount 6 The number of branches for this
business

 ◼

AFD Common API
Desktop Integration Guide – January 2023

 - 136 -

GroupID 6 An ID of the Group where a business
is part of a wider group

 ◼

ModelledTurnover 15 The modelled annual turnover for
the business

 ◼

NationalSize 6 Gives an indication of the number of
employees of an organisation
covering all sites. [7]

 ◼

Alias Localities (Non-postally required Localities)
AliasLocalities 4 Returns the number of alias records

present for the postcode sector in
which this result resides.

  

AliasLocality 35 Returns an alias (non-postal)
locality that resides in the postcode
sector that this address is
contained in. Note that many
postcode sectors have multiple
alias localities and as such you can
include this field multiple times to
return multiple localities.

  

USA Specific Fields
RecordType 30 Returns a description for the type of

address record returned. [12]
 

CarrierRouteID 4 Required for bulk mailings 

LACSStatus 2 Indicates if the address is available
on the LACSLink system for
obtaining new addresses.

 

FinanceNumber 7 The USPS Finance Number for this
location

 

CongressionalDistrict 3 The congressional district of this
address

CountyNumber 4 The USPS assigned number for this
county

 

CountyName 26 The name of the county for this
address

 

CityAbbreviation 14 Provides a postally acceptable
abbreviation for long city names.

 

Advanced / Premium Fields
DataSet 10 With Postcode Plus and Welsh data

can be set to ‘Welsh” to obtain the
Welsh language version of an
address in Wales where available. If

 ◼

AFD Common API
Desktop Integration Guide – January 2023

 - 137 -

not set, then the English language
version will be returned.

With TraceMaster this indicates an
historic dataset to use [9]

CouncilTaxBand 6 Provides the Council Tax Band for
the selected property.
Requires Names & Numbers

 ◼

Notes:

[3] STD Code Only – No Phone Number present

[4] Possible Occupancy values and descriptions are as follows (information in brackets
not part of the description):

1. Large User Organisation (Single Organisation on this postcode)
2. Small User Organisation (All the properties on this postcode are likely to be

businesses)
3. Mostly Organisations (Most of the properties on this postcode are organisations)
4. Mixed (This postcode contains a mixture of business and residential addresses)
5. Mostly Residential (Most of the properties on this postcode are residential)
6. Residential (All the properties on this postcode are likely to be residential)

[5] Possible Address Type values and descriptions are as follows (information in
brackets not part of the description):

1. Numbered (Only a property number needs to be captured)
2. Numbered and Named (This postcode contains a mixture of properties needing a

property number and those needing a property name including properties such as
16b)

3. Numbered and Named, Likelihood of Multiple Occupancy (This postcode contains a
mixture of properties needing a property number and those needing a property
name. Some of the properties on this postcode are likely to contain multiple
occupants, e.g., flats).

4. Named (This postcode only contains properties needing a property name).
5. Non-Standard Address Format (This refers to addresses which do not have a street

field at all or have multiple street names on the same postcode. This also includes
addresses with numbered localities (no street but a house number which goes in
with the locality field). It is in-effect a warning to be careful in capturing the property
information as it is not in one of the most common address formats).

6. PO Box (This postcode has a PO Box number)
7. No Property Information (Addresses on this postcode have no property information

- i.e., capture an Organisation or Resident name only)

[6] The household composition field includes both a number and description and can
have any of the following values.

AFD Common API
Desktop Integration Guide – January 2023

 - 138 -

1. 1 Male and 1 Female occupant with different surnames
2. 1 Male and 1 Female occupant with the same surname (married couples)
3. Mixed household
4. More than 2 persons with the same surname (e.g., older families).
5. 1 Male Occupant Only
6. 1 Female Occupant Only
7. More than 7 persons (e.g., old people’s home).

[7] The Size property can have any of the following values:
 A. 1 to 9 employees
 B. 10 to 19 employees
 C. 20 to 49 employees
 D. 50 to 99 employees
 E. 100 to 199 employees
 F. 200 to 499 employees
 G. 500 to 999 employees
 H. 1000+
 (If blank then this is unknown or not applicable).

[8] The phone match type will be set to F if the phone number has been matched to the
full name of this resident, or S if just to the surname. This can be useful for identifying the
bill payer among multiple residents.

[9] DataSet property when used with the Names & Numbers TraceMaster product can
currently be any of the following years: 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 or
Current (for the current data). Only one year can be specified at a time and
searches/lookups will fail if the specified year has not been installed. New years are
automatically accessible when they become available if installed with no change required
to the DLL or your application.

[10] The Product field can have any of the following values:
AFD Postcode
AFD Postcode Plotter
AFD Postcode Plus
AFD Names & Numbers
AFD Names & Numbers TraceMaster

[11] The Urban Rural Code differs from England and Wales, Scotland, and Northern
Ireland. The possible codes and their meanings are as follows:

England & Wales
1. Urban (Sparse): Falls within Urban settlements with a population of 10,000 or more and the
wider surrounding area is sparsely populated
2. Town and Fringe (Sparse): Falls within the Small Town and Fringe areas category and the
wider surrounding area is sparsely populated.

AFD Common API
Desktop Integration Guide – January 2023

 - 139 -

3. Village (Sparse): Falls within the Village category and the wider surrounding area is
sparsely populated.
4. Hamlet and Isolated Dwelling (Sparse): Falls within the Hamlet and Isolated Dwelling
category and the wider surrounding area is sparsely populated.
5. Urban (Less Sparse): Falls within urban settlements with a population of 10,000 or more
and the wider surrounding area is less sparsely populated.
6. Town and Fringe (Less Sparse): Falls within the Small Town and Fringe areas category and
the wider surrounding area is less sparsely populated.
7. Village (Less Sparse): Falls within the village category and the wider surrounding area is
less sparsely populated.
8. Hamlet and Isolated Dwelling (Less Sparse): Falls within the Hamlet & Isolated Dwelling
category and the wider surrounding area is less sparsely populated

Scotland
S1. Large Urban Area: Settlement of over 125,000 people.
S2. Other Urban Area: Settlement of 10,000 to 125,000 people.
S3. Accessible Small Town: Settlement of 3,000 to 10,000 people, within 30 minutes’ drive of
a settlement of 10,000 or more.
S4. Remote Small Town: Settlement of 3,000 to 10,000 people, with a drive time of 30 to 60
minutes to a settlement of 10,000 or more.
S5. Very Remote Small Town: Settlement of 3,000 to 10,000 people, with a drive time of over
60 minutes to a settlement of 10,000 or more.
S6. Accessible Rural: Settlement of less than 3,000 people, within 30 minutes’ drive of a
settlement of 10,000 or more.
S7. Remote Rural: Settlement of less than 3,000 people, with a drive time of 30 to 60 minutes
to a settlement of 10,000 or more.
S8. Very Remote Rural: Settlement of less than 3,000 people, with a drive time of over 60
minutes to a settlement of 10,000 or more.

Northern Ireland
A - E (Urban):
A. Belfast Metropolitan Urban Area
B. Derry Urban Area
C. Large Town: 18,000 and under 75,000 people
D. Medium Town: 10,000 and under 18,000 people
E. Small Town: 4,500 and under 10,000 people
F - H (Rural):
F. Intermediate Settlement: 2,250 and under 4,500 people
G. Village: 1,000 and under 2,250 people
H. Small Village, Hamlet or Open Countryside: Less than 1,000 people.

AFD Common API
Desktop Integration Guide – January 2023

 - 140 -

[12] The record type will be one of the following:

General Delivery
Highrise
Firm
Street
PO Box
Rural Route/Highway Contract
Multi-Carrier Route

AFD Common API
Desktop Integration Guide – January 2023

 - 141 -

Appendix B. BankFinder Fields

◼ Field returned by this product and fully searchable.
 Field returned by this product, but searchable only through the Search

Text field only.

Note: The API Wizard will add one to the default size for development
environments that normally use null terminated strings, e.g., C++ and C# to
accommodate the null terminator.

Also note that the alternative address formats provided do share some of
the same fields where their data is identical, but you should not mix and
match other fields between the different formats as this could lead to
address corruption. For example, with Standard Address Fields the Street or
Locality field could include a street number, whereas with Raw PAF Fields the
number would be in the separate Number field.

Field Name

Defaul
t
Size

Description

Ba
nk

Fi
nd

er

General Fields
Lookup 255 Specify sort code, postcode, and fast-find

lookup string’s here for lookup operations.

◼

ClearingSystem 25 Clearing system for this record [3] 

Key 40 Provides a key which can be used to easily
retrieve the record again, e.g., when a user
clicks on an item in the list box.

◼

List 512 Provides a list item formatted to be added to
a list box for this record.



Product 40 Provides the product name used [10] 

SearchText 255 Specify text to search for within any of the
BankFinder fields

◼

General Bank Fields
SortCode 6 Bank’s Sortcode ◼

BankBIC 8 Bank BIC Code [1] ◼

BranchBIC 3 Branch BIC Code [1] ◼

AFD Common API
Desktop Integration Guide – January 2023

 - 142 -

SubBranchSuffix 2 Allows a branch to be uniquely identified
where there is a cluster of branches sharing
the same Sort Code [1]



ShortBranchTitle 27 The official title of the branch ◼

FullBranchTitle 105 Extended title for the institution ◼

CentralBankCountryCode 2 The ISO Country code for beneficiary banks in
other countries



CentralBankCountryName 20 The country name corresponding to the ISO
code given.



SupervisoryBodyCode 1 Indicates the supervisory body for an
institution that is an agency in any of the
clearings. [2]



SupervisoryBodyName 50 The name of the supervisory body [2] 

DeletedDate 10 Specifies the date the branch was closed if it
is not active



BranchType 20 The branch type - Main Branch, Sub or NAB
Branch, Linked Branch



MainBranchSortCode 6 Set for linked branches in a cluster. It
identifies the main branch for the cluster. For
IPSO records this is set to the branch that
would handle transactions for this sortcode
when the branch has been amalgamated
with another.



Location 60 Where present helps indicate the physical
location of the branch.

◼

BranchName 35 Defines the actual name or place of the
branch

◼

AlternativeBranchName 35 An alternative name or place for the branch
where applicable.

◼

OwnerBankShortName 20 Short version of the name of the Owning Bank ◼

OwnerBankFullName 70 Full version of the name of the Owning Bank ◼

OwnerBankCode 4 The four-digit bank code of the Owning Bank
[1]



Standard Address Fields (Formatted as an address would appear on an envelope)
Organisation 120 Owner Bank Full Name ◼

Property 65 Bank Postal Address: Property (Building) 

Street 60 Bank Postal Address: Street 

Locality 60 Bank Postal Address: Locality 

Town 30 Bank Postal Address: Town ◼

County 30 Bank Postal Address: County (Optional) 

Postcode 8 The Royal Mail Postcode for this address ◼

Raw PAF Fields (Formatted closer to how they appear on Raw PAF, useful if your database
stores fields this way)

AFD Common API
Desktop Integration Guide – January 2023

 - 143 -

OrganisationName 60 Owner Bank Full Name ◼

SubBuilding 60 Bank Postal Address: Sub-Building Name 

Building 60 Bank Postal Address: Building Name 

Number 10 Bank Postal Address: House Number 

DependentThoroughfare 60 Bank Postal Address: Sub-Street Name 

Thoroughfare 60 Bank Postal Address: Street Name 

Double DependentLocality 35 Bank Postal Address: Sub-Locality Name 

DependentLocality 35 Bank Postal Address: Locality Name 

Town 30 Bank Postal Address: Postal Delivery Town ◼

County 30 Bank Postal Address: County (Optional) 

Postcode 8 The Royal Mail Postcode for this address ◼

Alternative Postcode Fields (Can be used in-place of the Postcode field to provide it as
separate parts)
Outcode 4 The portion of the postcode before the space ◼

Incode 3 The portion of the postcode after the space ◼

Phone Number Related Fields
Phone 20 Phone Number for this bank ◼

Fax 20 Fax Number for this bank (IPSO only) 

BACS Related Fields (Not applicable to IPSO Records)
BACSStatus 5 Indicates the BACS Clearing Status [4] 

BACSStatusDescription 60 Provides a description for the status [4] 

BACSLastChange 10 Date on which BACS data was last amended 

BACSClosedClearing 10 Indicates the date the branch is closed in
BACS clearing if applicable.



BACSRedirectedFromFlag 1 Set to R if other branches are redirected to
this sort code.



BACSRedirectedToSortCode 6 This specifies the sort code to which BACS
should redirect payments addressed to this
sort code if applicable.



BACSSettlementBankCode 4 BACS Bank Code of the bank that will settle
payments for this branch.



BACSSettlementBankShortNam
e

20 Short form name of the settlement bank 

BACSSettlementBankFullName 70 Full form name of the settlement bank 

BACSSettlementBankSection 2 Numeric data required for BACS to perform
its settlement.



BACSSettlementBankSubSectio
n

2 Numeric data required for BACS to perform
its settlement.



BACSHandlingBankCode 4 BACS Bank Code of the member that will take
BACS output from this branch.



BACSHandlingBankShortName 20 Short form name of the handling bank 

BACSHandlingBankFullName 70 Full form name of the handling bank 

AFD Common API
Desktop Integration Guide – January 2023

 - 144 -

BACSHandlingBankStream 2 Numeric code defining the stream of output
within the Handling Bank that will be used or
payments to this branch.



BACSAccountNumbered 1 Set to 1 if numbered bank accounts are used 
BACSDDIVoucher 1 Set to 1 if Paper Vouchers have to be printed

for Direct Debit Instructions.



BACSDirectDebits 1 Set to 1 if branch accepts Direct Debits 
BACSBankGiroCredits 1 Set to 1 if branch accepts Bank Giro Credits 
BACSBuildingSocietyCredits 1 Set to 1 if branch accepts Building Society

Credits.



BACSDividendInterestPayment
s

1 Set to 1 if branch accepts Dividend Interest
Payments.



BACSDirectDebitInstructions 1 Set to 1 if branch accepts Direct Debit
Instructions.



BACSUnpaidChequeClaims 1 Set to 1 if branch accepts Unpaid Cheque
Claims.



CHAPS Related Fields (Not applicable to IPSO Records)
CHAPSPStatus 1 Indicates the CHAPS Sterling clearing Status

[5]



CHAPSPStatusDescription 80 Provides a description for the status [5] 
CHAPSPLastChange 10 Date on which CHAPS Sterling data was last

amended



CHAPSPClosedClearing 10 Indicates the date the branch is closed in
CHAPS Sterling clearing if applicable.



CHAPSPSettlementBankCode 3 CHAPS ID of the bank that will settle
payments for this branch,



CHAPSPSettlementBankShortN
ame

20 Short form of the name of the settlement
bank



CHAPSPSettlementBankFullNa
me

70 Full form of the name of the settlement bank 

CHAPSEStatus 1 Indicates the CHAPS Euro clearing Status [6] 
CHAPSEStatusDescription 80 Provides a description for the status [6] 
CHAPSELastChange 10 Date on which CHAPS Euro data was last

amended



CHAPSEClosedClearing 10 Indicates the date the branch is closed in
CHAPS Euro clearing if applicable.



CHAPSEEuroRoutingBICBank 8 Specifies the SWIFT closed user group Bank
BIC to which CHAPS Euro payments for this
branch should be routed.



CHAPSEEuroRoutingBICBranch 3 Specifies the SWIFT closed user group Branch
BIC to which CHAPS Euro payments for this
branch should be routed.



CHAPSESettlementBankCode 3 CHAPS ID of the bank that will settle
payments for this branch.



AFD Common API
Desktop Integration Guide – January 2023

 - 145 -

CHAPSESettlementBankShortN
ame

20 Short form of the name of the settlement
bank



CHAPSESettlementBankFullNa
me

70 Full form of the name of the settlement bank 

CHAPSEReturnIndicator 1 Set to R if this is the branch to which CHAPS
Euro payments should be sent.



C&CCC Related Fields (Not applicable to IPSO Records)
CCCCStatus 1 Indicates the C&CCC clearing Status [7] 
CCCCStatusDescription 40 Provides a description for the status [7] 
CCCCLastChange 6 Date on which C&CCC data was last

amended



CCCCClosedClearing 30 Indicates the date the branch is closed in
C&CCC clearing if applicable.



CCCCSettlementBankCode 3 BACS generated code of the bank that will
settle payments for this branch.



CCCCSettlement
BankShortName

20 Short form of the name of the settlement
bank



CCCCSettlement
BankFullName

70 Full form of the name of the settlement bank 

CCCCDebitAgencySortCode 50 When the Status field is set to 'D' this specifies
where cheque clearing is handled for this
branch.



CCCCReturnIndicator 6 Set if this is the branch that other banks
should return paper to. It will only be set for a
sort code of a Member.



Validation Related Fields

AccountNumber 12 The account number to validate (set along
with the sort code field for account number
validation).

◼

TypeOfAccount 1 The type of account field required for
transmitting data to BACS when the account
number has been translated.



RollNumber 20 For some building society credit accounts a
roll number is required. This can be specified
here for validation.

◼

IBAN 50 The International Bank Account Number. This
contains the sort code and account number
in a standardised format for cross-border
transactions.

◼

BuildingSocietyName 70 For building society accounts requiring a roll
number this will contain the name of the
recieving building society as this sometimes



AFD Common API
Desktop Integration Guide – January 2023

 - 146 -

differs from the bank branch that the
payment passes through.

CardNumber 20 Used to specify a card number to validate ◼

ExpiryDate Optional field to specify an expiry date to
validate along with the card number.

◼

CardType 30 Indicates the card type following validation [8] 

Notes:

[1] Does not apply to records in the IPSO (Irish Payment Services Organisation) clearing

system.

[2] The supervisory body code and name can be any of the following:
 A. Bank of England
 B. Building Society Commission
 C. Jersey, Guernsey or Isle of Man authorities
 D. Other

[3] The clearing system property can have one of the following values

United Kingdom (BACS) – For branch records for the UK clearing system.
Ireland (IPSO) – For branch records on the Irish Payment Services Organisation
Clearing System.
Both UK and Irish – Returned by Account Number Validation only when a branch is
on both systems.

Note, that you should only accept account numbers validated on the Irish system if
you can clear through both the Irish (IPSO) system as well as the UK (BACS) system.

[4] Possible values for the BACS Status and Description fields are as follows:
 M. Branch of a BACS Member
 A. Branch of an Agency Bank
 I. Member of the Irish Clearing Services (IPSO)
 N. Does not accept BACS Payments

[5] Possible values for the CHAPS Sterling Status and Description fields are as follows:

M. Direct Branch of a CHAPS £ Member that Accepts CHAPS £ Payments
 A. Branch of an Agency Bank that Accepts CHAPS £ Payments

I. Indirect Branch of a Member or Agency Bank that Accepts CHAPS £ Payments
 N. Does not accept CHAPS £ Payments

[6] Possible values for the CHAPS Euro Status and Description fields are as follows:

D. Direct Branch of a CHAPS € Member that Accepts CHAPS € Payments
I. Indirect Branch of a Member or Agency Bank that Accepts CHAPS €

Payments

AFD Common API
Desktop Integration Guide – January 2023

 - 147 -

 N. Does not accept CHAPS € Payments

[7] Possible values for the C&CCC Status and Description fields are as follows:
 M. Branch of a C&CCC Member
 F. Full Agency Bank Branch
 D. Debit Agency Branch Only
 N. Not Part of the C&CCC Clearing

[8] Possible values for the card type field are as follows:
 MasterCard
 Visa
 American Express
 Visa Debit
 Electron
 Visa Purchasing
 UK Maestro
 International Maestro
 Solo and Maestro
 JCB
 Charities Aid Foundation
 MasterCard Debit

 [10] The Product field would have the value ‘AFD BankFinder’.

AFD Common API
Desktop Integration Guide – January 2023

 - 148 -

Appendix C. Nearest Fields

◼ Field returned by this product and can be used in a Lookup.
 Field returned by this product, but not searchable.

Field Name

Default
Size

Description N

ea
re

st

General Fields
Lookup 255 Used to specify the string to process ◼

GBGridE 10 Provides the Grid Easting value for the nearest record or
a Grid Easting to lookup if no lookup string is supplied.

◼

GBGridN 10 Provides the Grid Northing value for the nearest record
or a Grid Easting to lookup if no lookup string is supplied.

◼

NIGridE 10 Provides the Grid Easting value on the Irish Grid System. ◼
NIGridN 10 Provides the Grid Northing value on the Irish Grid System. ◼
Latitude 10 Latitude representation of Grid Reference in Decimal

Format (WGS84)

◼

Longitude 10 Longitude representation of Grid Reference in Decimal
Format (WGS84)

◼

TextualLatitude 15 A textual representation of the Latitude field 

TextualLongitud
e

15 A textual representation of the Longitude field 

Km 10 Distance of this record from supplied grid reference in
kilometres, or the maximum distance to return records
for.

◼

Miles 10 Distance of this record from supplied grid reference in
miles, or the maximum distance to return record for.

◼

List 512 Provides a list item formatted to be added to a list box
for this record.



Key 40 Provides a key which can be used to easily retrieve the
record again, e.g., when a user clicks on an item in the
list box.



Product 40 Indicates the product name used 

MaxRecords 5 Specifies the maximum number of records to return. 

In addition to these all the fields contained in the database table that you
are using with Nearest are also returned and are fully searchable when using
the Search operation.

AFD Common API
Desktop Integration Guide – January 2023

 - 149 -

Appendix D. List Fields

◼ Field returned by this product and fully searchable.
 Field returned by this product, but not searchable.

All List Operations:

Field Name

Default
Size

Description St

ri
ng

General Fields
Lookup 255 For an alias locality lookup this specifies the postcode or

record key to find the alias localities for.
With Names & Numbers Field Lists this specifies that only
those entries starting with this string should be returned.

◼

List 255 Returns each list entry 

Product 40 Indicates the product name used 

AFD Common API
Desktop Integration Guide – January 2023

 - 150 -

Appendix E. Utility Fields

◼ Field returned by this product and fully searchable.
 Field returned by this product, but not searchable.

Grid Utility:

Field Name

Default
Size

Description St

ri
ng

General Fields
Lookup 255 Used to specify the string to process ◼

GBGridE 10 Grid Easting Reference - GB Grid ◼

GBGridN 10 Grid Northing Reference - GB Grid ◼

NIGridE 10 Grid Easting Reference - Irish Grid ◼
NIGridN 10 Grid Northing Reference - Irish Grid ◼
Latitude 10 Latitude representation of Grid Reference in Decimal

Format (WGS84)

◼

Longitude 10 Longitude representation of Grid Reference in Decimal
Format (WGS84)

◼

TextualLatitude 15 Latitude representation of Grid Reference in Direction,
Degrees, Minutes and Seconds

◼

TextualLongitud
e

15 Latitude representation of Grid Reference in Direction,
Degrees, Minutes and Seconds

◼

Km 6 Specifies the string to search for ◼

Miles 6 Specifies the string to replace occurrences of Search
with.

◼

GBGridEFrom 10 Grid Easting Reference - GB Grid – used to specify two
points for a distance calculation

◼

GBGridNFrom 10 Grid Northing Reference - GB Grid – used to specify two
points for a distance calculation

◼

NIGridEFrom 10 Grid Easting Reference - Irish Grid – used to specify two
points for a distance calculation

◼

NIGridNFrom 10 Grid Northing Ref. - Irish Grid – used to specify two points
for a distance calculation

◼

LatitudeFrom 10 Latitude representation of Grid Reference in Decimal
Format (WGS84) – used to specify two points for a
distance calculation

◼

LongitudeFrom 10 Longitude representation of Grid Reference in Decimal
Format (WGS84) – used to specify two points for a
distance calculation

◼

AFD Common API
Desktop Integration Guide – January 2023

 - 151 -

TextualLatitudeF
rom

15 Latitude representation of Grid Reference in Direction,
Degrees, Minutes and Seconds – used to specify two
points for a distance calculation

◼

TextualLongitud
eFrom

15 Latitude representation of Grid Reference in Direction,
Degrees, Minutes and Seconds – used to specify two
points for a distance calculation

◼

Email Utility:

Field Name

Default
Size

Description Em

ai
l

Email Field
Email 255 The Email Address to validate ◼

String Utility – Depreciated and Unsupported:

Field Name

Default
Size

Description St

ri
ng

General Fields
Lookup 255 Used to specify the string to process ◼

Postcode 10 Provides the postcode output where applicable 

Outcode 4 Provides the outcode portion of the postcode where
applicable.



Incode 3 Provides the incode portion of the postcode where
applicable.



County 30 Provides the abbreviated county name where applicable. 
Search 255 Specifies the string to search for 

Replace 255 Specifies the string to replace occurrences of Search with. 

AFD Common API
Desktop Integration Guide – January 2023

 - 152 -

Appendix F. Refiner Address Fields

When cleaning an address, you can use any of the address fields in the
structure to specify the address. These do not need to match up to the
actual fields, for example if you have Address Line 1, Address Line 2, Address
Line 3 and Postcode in your database you could set these to Property, Street,
Locality and Postcode fields in the structure and they will be cleaned and
returned in the correct named fields when matched.

The address fields that you can use to specify the address to be cleaned are
as follows:

Standard Fields
Organisation
Property
Street
Locality
Town
PostalCounty
AbbreciatedPostalCounty
OptionalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Postcode

Raw Fields
Department
OrganisationName
SubBuilding
Building
Number
DependantThoroughfare
Thoroughfare
DoubleDependantLocality
DependantLocality
Town
PostalCounty

AFD Common API
Desktop Integration Guide – January 2023

 - 153 -

AbbreciatedPostalCounty
OptionalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Postcode

BS7666 Fields
Department
Organization
SubUnit
BuildingName
BuildingNumber
SubStreet
DeliveryStreet
SubLocality
DeliveryLocality
DeliveryTown
PostalCounty
AbbreciatedPostalCounty
OptionalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Code

Large Number of Address Lines

If you have more address lines then a normal address will allow you can still
send these to the Refiner API simply by making use of all the county fields in
order, for example with standard fields:

Address Line 1 = Organisation
Address Line 2 = Property
Address Line 3 = Street
Address Line 4 = Locality
Address Line 5 = Town

AFD Common API
Desktop Integration Guide – January 2023

 - 154 -

Address Line 6 = PostalCounty
Address Line 7 = AbbreciatedPostalCounty
Address Line 8 = OptionalCounty
Address Line 9 = AbbreviatedOptionalCounty
Address Line 10 = TraditionalCounty
Address Line 11 = AdministrativeCounty
Address Line 12 = Postcode

If your address lines are too long for the default lengths (e.g. County fields
are only 30 characters long) you can increase these in your Field
Specification as required.

Cleaned Address

Refiner will always output the cleaned data in the correct fields for the
format you have selected. You can write the data back to your database in
any form that you wish.

AFD Common API
Desktop Integration Guide – January 2023

 - 155 -

Appendix G. BS7666-5:2006

When using AFD Address Management products the Common API has the
option to return an address in BS7666 format. You should note that this is
the proposed BS7666 Part 5 (BS 7666-5:2006) and AFD will ensure that any
necessary changes are made to conform to the final specification for Part 5
of BS7666 when it is released.

The proposed Part 5 of the BS7666 specification is the one which is intended
for a delivery point gazetteer and so is designed to provide a standard for
postal addresses of the type which AFD Software provides. Older standards
such as BS 7666-3:2000 dealt with address specification but these were not
specific to postal addresses and as such were not suitable for providing
address data.

You should note that, strictly speaking, only AFD Postcode Plus is a delivery
point gazetteer which can comply with this standard, as it contains
addresses at delivery point level. However, both AFD Names & Numbers and
AFD Postcode can also return fields in this format which can be used to aid
BS7666 compliance in your address database. AFD Names & Numbers
contains these compliant addresses along with additional Name data.

This appendix explains how to use the fields returned by the Common API in
this address format to capture addresses compliant with this standard.

Gazetteer MetaData

You will require the following Gazetteer MetaData to use for compliance with
the proposed BS7666-5:2006:

Field Value
Name “Postal Delivery Point Gazetteer”
Scope “Premises receiving a postal delivery from Royal Mail”
Territory of Use “Great Britain, Northern Ireland, Isle of Man and Channel Islands”
Gazetteer Owner “AFD Software Ltd”
Custodian “AFD Software Ltd”
Coordinate System “National Grid of Great Britain”
Spatial Referencing
System

“Postal Address”

AFD Common API
Desktop Integration Guide – January 2023

 - 156 -

Current Date <Use the BuildDate Field from AFDData>
Language “ENG”

Delivery Point Records

For each delivery point record returned from a Lookup or Search in the AFD
data the following shows how the BS7666 fields returned correlate to those
in the proposed BS7666-5:2006 standard:

Field AFD Field To Use
Identifier Identifier
Start Date BuildDate – AFD products are a complete data refresh so they

come into use at the build date.
Entry Date BuildDate – You may wish to change this to the date you input

an address onto your database.
Update Date BuildDate – You may wish to change this to the date you update

an address onto your database.
Position
 X GBGridE
 Y GBGridN
Spatial Reference
 Identifier Identifier
 Language Language
 Department Department
 Organization Organization
 Sub-Unit SubUnit
 Building Name BuildingName
 Building Number BuildingNumber
 Sub-Street SubStreet
 Delivery Street DeliveryStreet
 Sub-Locality SubLocality
 Delivery Locality DeliveryLocality
 Delivery Town DeliveryTown
 County This is an optional attribute and if you wish to include a County

you can use any of the County fields defined in Appendix A as
you desire.

 Code Code
Administrator Administrator

Data Quality Report

For BS 7666-5:2006 compliance a data quality report is now also required.

AFD Common API
Desktop Integration Guide – January 2023

 - 157 -

Lineage
The delivery point information present in AFD Postcode Plus is derived from
the Royal Mail Postcode Address File, with updates provided on a quarterly
or annual basis depending on if you have purchased quarterly updates. The
data in the Royal Mail Postcode Address File is included in its entirety
however is processed to conform to the BS 7666-5:2006 standard, which PAF
in it’s raw form does not comply with. In AFD Names & Numbers additional
postal delivery points are also available which are obtained from Electoral
Roll data but which do not appear on PAF.

Currency
This date is specified by the BuildDate Field of the AFDData structure.

Positional Accuracy
Using the default DataTalk GeoRef grid references, the co-ordinates of the
gazetteer are to a 10m resolution. These provide the approximate location
of the postcode for which the address falls.

If using Royal Mail Postzon grid references, the co-ordinates of the gazetteer
are to 100m resolution and are provided by the Gridlink® consortium (of
which the Office of National Statistics (ONS), Ordnance Survery (OS),
Ordnance Survey of Northern Ireland (OSNI), the General Register Office for
Scotland (GROS) and Royal Mail are all a part). These are generally given as
the top left of the 100m square for which the property at the centre of the
postcode falls. They are constantly verified and updated, and full details of
their accuracy should be obtained from GridLink members if required.

If accuracy is important, and for a resolution within 1m of the postcode,
Ordnance Survey CodePoint grids are an optional extra for address
management products and are used in-place of GeoRef/Postzon grid
references.

Attribute Accuracy
The data in AFD Postcode Plus is accurate in that it contains all postal
delivery points held by Royal Mail. Royal Mail PAF is quoted as being 96.1%
accurate in 2003 and a new accuracy measure is being developed which
should be able to provide a better picture of its accuracy. AFD Names &

AFD Common API
Desktop Integration Guide – January 2023

 - 158 -

Numbers contains Royal Mail PAF data to the same accuracy along with
additional addresses present on the Electoral Roll but not in PAF.

Completeness
The data in AFD Postcode Plus is accurate and contains 100% of PAF records
with no duplicates and tests against the original PAF data are carried out to
verify this. Royal Mail PAF is quoted as being 96.1% accurate and that reflects
its completeness too – a better break down should be available once Royal
Mail have developed a new accuracy measure. AFD Names & Numbers
contains Royal Mail PAF data to the same accuracy, and additional
addresses are presented as complete as is possible – no independent
measure of that accuracy is available. They may well be duplicate
addresses on AFD Names & Numbers as they cannot be matched to PAF but
may identify the same delivery point.

Logical Consistency
The records in the data have been tested against the specification for the
gazetteer to ensure that all are recorded in a consistent manual. This was
done with both fully automated tests, and manually sampling addresses to
ensure the format they appear is both consistent with the proposed BS
7666-5:2006 standard and with the other addresses present.

AFD Common API
Desktop Integration Guide – January 2023

 - 159 -

Appendix H. Grid References

AFD Postcode Plotter, AFD Postcode Plus, AFD Names & Numbers, and AFD
Names & Numbers TraceMaster all contain grid references. DataTalk GeoRef
is a Postcode level grid reference data supplied by AFD for distance
calculations, nearest calculations, and data / location analysis. It is made
up of a six-digit Easting and a six-digit Northing. This reference relates the
location of the Postcode to the National Grid (or Irish Grid for Northern Ireland
Postcodes (start with BT).

DataTalk GeoRef is a good alternative to Postzon. However, Postzon, Code
Point and Address Point data options are available at additional cost.

The grid references returned by these products are available in the following
Fields:

GridE, GridN

This pair of grid references denotes the grid reference for the postcode on
the National Grid of Great Britain for all postcodes other than those in
Northern Ireland. For Northern Ireland the grid reference is returned in the
Irish grid. The Grid References are provided as a 6-digit grid northing (7
digits for some northernmost parts of Scotland) and a 6-digit grid easting.

GBGridE, GBGridN

This pair of grid references denotes the grid reference for the postcode on
the National Grid of Great Britain. This is used for all addresses in England,
Scotland and Wales and can also be convenient to use for addresses in
Northern Ireland in order to provide a common baseline with the rest of the
UK. The Grid References are provided as a 6-digit grid northing (7 digits for
some northernmost parts of Scotland) and a 6-digit grid easting.

NIGridE, NIGridN

This pair of grid references denotes the grid reference for the postcode on
the Irish Grid System. This is used for all addresses in Northern Ireland, and
a conversion is provided for addresses in the rest of the UK so it can be used

AFD Common API
Desktop Integration Guide – January 2023

 - 160 -

as a common baseline if preferred for companies operating mainly in
Northern Ireland. The Grid References are provided as a 6-digit grid northing
and a 6-digit grid easting.

Latitude, Longitude

This pair of latitude and longitude values are provided in decimal format to
four decimal places. These values are based on the WGS84 standard - the
one in most common usage with GPS systems. However, you should note
that these references can only be as good as the grid references that they
are converted from.

Textual Latitude, Textual Longitude

These also provide the latitude and longitude values as above, but they are
provided in a textual representation which, while being less useful as input
to computer related applications, can be more readable to a user as they
provide the direction, degrees, minutes and seconds components of the
latitude and longitude value for this location.

AFD Common API
Desktop Integration Guide – January 2023

 - 161 -

Appendix I. Setting and Retrieving Fields Individually

Please note that this appendix is applicable to using the Standard API only.
When using PostcodeEverywhere XML there is no need to set or retrieve fields
individually.

The normal way of working with the Common API is to pass to it a structure
or type containing all the fields that you require – you set the relevant fields
for a lookup or search and then can read in any of the fields returned in your
application. However, there are some development environments which do
not support such structures or types and so can make it more difficult to set
and retrieve data from the API. In such cases you can often define a single
string made up of the number of spaces which equates to the length of the
structure required and set and retrieve the appropriate portion of the String
to obtain the required field. However, to make this easier the Common API
also supports a special mode whereby fields can be assigned and retrieved
individually, and this is described in this section.

Specifying the Individual Fields Option

To specify that fields will be retrieved individually, rather than using a
structure, you will need to add the option ‘F’ for individual fields to the field
specification string that you are using. See Section 4.13 for more information
regarding the Field Specification string. As with the structure, the fields
returned will be space padded unless you use the ‘X’ option which will mean
they are returned null terminated instead. It should be noted that any field
that you wish to use must be included in your field specification string.

Example VB Declaration for the Field Specification string using individual fields:

Public Const afdFieldSpec =
"Address@F@Lookup:255@Name:120@Organisation:120@Property:120@Street:120@Locality:70@Town:30@Postcod
e:10@PostcodeFrom:8@Key:40@List:512"

Example C++ Declaration for the Field Specification string using individual fields:

static char afdFieldSpec[2048] =
"Address@LXF@Lookup:256@Name:121@Organisation:121@Property:121@Street:121@Locality:71@Town:31@Postcode
:11@PostcodeFrom:9@Key:41@List:513";

AFD Common API
Desktop Integration Guide – January 2023

 - 162 -

Setting Fields

To set a field in the structure, for example the Lookup field for carrying out a
lookup operation you should specify an operation code of 8 to a call to
AFDData. A constant can be defined for this as follows:

Constant Value Description
AFD_FIELD_VALUE 8 Used to set and retrieve

individual field values.

You can then call the AFDData function with your field specification string,
the AFD_FIELD_VALUE operation parameter, and then the third parameter
should be a string of at least 512 characters. This can either be null
terminated or space padded to include the name of the field you wish to set
followed by the equal’s symbol and its value, for example “Lookup=B1 1AA”.

Example VB code to set the lookup field:

Dim fieldValue As String * 512
Dim retVal As Long
fieldValue = "Lookup=B1 1AA"
retVal = AFDData(afdFieldSpec, AFD_FIELD_VALUE, ByVal fieldValue)

Example C++ code to set the lookup field

char fieldValue[512];
long retVal;
strcpy(fieldValue, "Lookup=B1 1AA");
retVal = (afdData)(afdFieldSpec, AFD_FIELD_VALUE, fieldValue);

Calling the AFDData function to carry out an operation

The AFDData function is called to carry out an operation in exactly the same
way as when a structure or type is used. The only difference is that no
structure or type is required and as such the third parameter of the call to
AFDData can be an empty string, null, or any other value as may be most
convenient for the environment you are using as it is not used.

Example VB code to carry out a fastfind operation:

retVal = AFDData(afdFieldSpec, AFD_FASTFIND_LOOKUP, "")

Example C++ code to carry out a fastfind operation:

retVal = (afdData)(afdFieldSpec, AFD_FASTFIND_LOOKUP, NULL);

AFD Common API
Desktop Integration Guide – January 2023

 - 163 -

Retrieving Field Values

Retrieving field values is done in a similar way to setting them. Like when you
set the fields you should specify the AFD_FIELD_VALUE operation (8) to
AFDData.

You can then call the AFDData function with your field specification string,
the AFD_FIELD_VALUE operation parameter, and then the third parameter
should be a string of at least 512 characters. This can either be null
terminated or space padded to include the name of the field you wish to
retrieve, for example “Town”. This string will be replaced with the actual field
value.

Example VB code to retrieve the town field:

Dim fieldValue As String * 512
Dim retVal As Long
fieldValue = "Town"
retVal = AFDData(afdFieldSpec, AFD_FIELD_VALUE, ByVal fieldValue)
' fieldValue now contains the Town field for the last result

Example C++ code to set the lookup field

char fieldValue[512];
long retVal;
strcpy(fieldValue, "Town");
retVal = (afdData)(afdFieldSpec, AFD_FIELD_VALUE, ByVal fieldValue);
// fieldValue now contains the Town field for the last result

Clearing the fields

If you are carrying out a search you will want to clear the values of all fields
prior to setting your search criteria as otherwise search fields will already
have the values of the previous result. This can be achieved quickly by
simply specifying the special field ‘Clear’ to the AFDData function which will
clear all fields.

Example VB code to clear all fields:

Dim fieldValue As String * 512
Dim retVal As Long
fieldValue = "Clear"
retVal = AFDData(afdFieldSpec, AFD_FIELD_VALUE, ByVal fieldValue)

AFD Common API
Desktop Integration Guide – January 2023

 - 164 -

Example C++ code to clear all fields

char fieldValue[512];
long retVal;
strcpy(fieldValue, "Clear");
retVal = (afdData)(afdFieldSpec, AFD_FIELD_VALUE, fieldValue);

Full Fast Find Example

Given below is a full example which sets and retrieves fields individually for
a fast find lookup with Address Management products, adding results to a
list box:

Example VB code for an Address Management Lookup:

 Dim fieldValue As String * 512, fieldValue2 As String * 512
 Dim retVal As Long
 Static running As Boolean

 ' Prevent corruption of list box from button being clicked twice
 If running Then Exit Sub
 running = True

 ' Replace lstResult with the name of your list box for the results
 With lstResult

 ' Clear out any existing items in the list
 .Clear

 ' Reset Cancel flag
 cancelFlag = False

 ' Set the lookup
 fieldValue = "Lookup=" + txtLookup.Text ' Change to your lookup entry textbox
 retVal = AFDData(afdFieldSpec, AFD_FIELD_VALUE, ByVal fieldValue)

 ' Carry out the lookup (no need to alter the line below, unless you want to add a sector skip option - see
constants)
 retVal = AFDData(afdFieldSpec, AFD_FASTFIND_LOOKUP, "")

 ' Abort with Message if error or user cancelled
 If retVal < 0 Then
 MsgBox AFDErrorText(retVal)
 running = False
 Exit Sub
 End If

 ' Display any changed postcode if applicable
 fieldValue = "PostcodeFrom"
 Call AFDData(afdFieldSpec, AFD_FIELD_VALUE, ByVal fieldValue)
 If Trim(fieldValue) <> "" Then
 fieldValue2 = “Postcode”
 Call AFDData(afdFieldSpec, AFD_FIELD_VALUE, ByVal fieldValue2)

AFD Common API
Desktop Integration Guide – January 2023

 - 165 -

 MsgBox "Postcode has changed from " + Trim(fieldValue) + " to " + Trim(fieldValue2)
 End If

 ' Now add matching records to the list box
 Do While retVal >= 0
 If retVal <> AFD_RECORD_BREAK Then
 ' Add the item to the list box with hidden key at the end
 fieldValue = "List"
 fieldValue2 = "Key"
 Call AFDData(fieldSpecInd, AFD_FIELD_VALUE, ByVal fieldValue)
 Call AFDData(fieldSpecInd, AFD_FIELD_VALUE, ByVal fieldValue2)
 .AddItem fieldValue + fieldValue2
 End If
 ' Give user the chance to cancel and allow list box to update
 DoEvents
 ' Check if user cancelled
 If cancelFlag Then
 MsgBox "Lookup Cancelled"
 running = False
 Exit Sub
 End If
 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_FASTFIND_LOOKUP, “”)
 Loop

 ' Check results have been returned
 If .ListCount = 0 Then
 MsgBox "No Results Found"
 Else
 .ListIndex = 0 ' Select First item in the list
 End If

 End With

 running = False

Example C++ Code For an Address Management Lookup (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;
 AFDDATA afdData = (AFDDATA)NULL;
 static bool running = false;
 char fieldValue[512];
 char listItem[2055];
 char msgTxt[255];
 long retVal;
 CListBox* listBox;
 MSG msg;

 // Check if we are already running to prevent crossing over items in the listbox
 if (running) return;
 running = true;

 // Load DLL
 if (!afdInitDLL(&afdDLL, &afdData)) {
 MessageBox("Error Loading afddata.dll", "Error", 0);
 return;
 }

AFD Common API
Desktop Integration Guide – January 2023

 - 166 -

 // Replace m_lstResult with the name given to a variable assigned to your list box control for the results
 listBox = &m_lstResult;

 // Clear out any existing items in the list
 listBox->ResetContent();

 // Reset Cancel flag
 cancelFlag = false;

 // Update Data so we can read the lookup variable
 UpdateData(TRUE);

 // Set the lookup
 strcpy(fieldValue, "Lookup=B1 1AA");
 retVal = (afdData)(afdFieldSpec, AFD_FIELD_VALUE, m_txtLookup); // Change this to your lookup entry textbox
value variable

 // Carry out the lookup (no need to alter the line below, unless you want to add a sector skip option - see
constants)
 retVal = (afdData)(afdFieldSpec, AFD_FASTFIND_LOOKUP, NULL);

 // Abort with Message if error or user cancelled
 if (retVal < 0) {
 AFDErrorText(retVal, msgTxt);
 MessageBox(msgTxt, "Error", 0);
 running = false;
 return;
 }

 // Display any changed postcode if applicable
 fieldValue = "PostcodeFrom"
 (afdData)(afdFieldSpec, AFD_FIELD_VALUE, fieldValue);
 if (fieldValue[0] != '\0') {
 strcpy(msgTxt, "Postcode has changed from ");
 strcat(msgTxt, fieldValue);
 strcat(msgTxt, " to ");
 fieldValue = "Postcode"
 (afdData)(afdFieldSpec, AFD_FIELD_VALUE, fieldValue);
 strcat(msgTxt, fieldValue);
 MessageBox(msgTxt, "Changed Postcode", 0);
 }

 // Now add matching records to the list box
 while (retVal >= 0) {
 if (retVal != AFD_RECORD_BREAK) {
 // make up list item with hidden key at the end
 fieldValue = "List"
 (afdData)(afdFieldSpec, AFD_FIELD_VALUE, fieldValue);
 memset(listItem, ' ', 552);
 strncpy(listItem, fieldValue, strlen(fieldValue));
 fieldValue = "Key"
 (afdData)(afdFieldSpec, AFD_FIELD_VALUE, fieldValue);
 strncpy(listItem + 512, fieldValue, strlen(fieldValue));
 listItem[552] = '\0';
 // Add the item to the list box
 listBox->AddString(listItem);
 }

AFD Common API
Desktop Integration Guide – January 2023

 - 167 -

 // Give user the chance to cancel and allow list box to update
 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 // Check if user cancelled
 if (cancelFlag) {
 MessageBox("Search Cancelled", "Cancelled", 0);
 return;
 }
 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_FASTFIND_LOOKUP, NULL);
 }

 // Check results have been returned
 if (listBox->GetCount() == 0)
 MessageBox("No Results Found", "Error", 0);
 else {
 listBox->SetCurSel(0); // Select First item in the list

 OnSelchangeLstResult(); // Set this to your list change method to simulate selecting the first list item

 }

 // free DLL instance
 FreeLibrary(afdDLL);
 afdDLL = (HINSTANCE)NULL;

 running = false;

AFD Common API
Desktop Integration Guide – January 2023

 - 168 -

Appendix J. PostcodeEverywhere Field Presets

When using the PostcodeEverywhere XML Server the Fields parameter is
used to specify the fields which are to be returned in each XML item.
However rather than specifying each field by name, a set of presets, are
avaliable which includes the relevant fields in the XML. This appendix lists
the fields included in each preset for each data type. Note that some fields
may never contain any data depending on the product you are using.

Please note that fields may be added in the future as products continue to
develop, however fields will not be removed from the preset which will
ensure we retain compatibility with your application.

Address Management Products

A description of each of these fields is given in Appendix A

List
Postcode
PostcodeFrom
Key
List

Simple
Name
Organisation
Property
Street
Locality
Town
PostalCounty
AbbreviatedPostalCounty
OptionalCounty
AbbreviatedPostalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty

AFD Common API
Desktop Integration Guide – January 2023

 - 169 -

Postcode
DPS
PostcodeFrom
PostcodeType
Phone
Key
List

Standard
Name
Organisation
Property
Street
Locality
Town
PostalCounty
AbbreviatedPostalCounty
OptionalCounty
AbbreviatedPostalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Postcode
DPS
PostcodeFrom
PostcodeType
MailsortCode
Phone
GridE
GridN
Miles
Km
Latitude
Longitude
JustBuilt
UrbanRuralCode
UrbanRuralName
WardCode

AFD Common API
Desktop Integration Guide – January 2023

 - 170 -

WardName
Constituency
EERCode
EERName
AuthorityCode
Authority
LEACode
LEAName
TVRegion
Occupancy
OccupancyDescription
AddressType
AddressTypeDescription
UDPRN
NHSCode
NHSName
NHSRegionCode (Obsolete)
NHSRegionName (Obsolete)
PCTCode
PCTName
SubCountryName
DevolvedConstituencyCode
DevolvedConstituencyName
CensationCode
Affluence
Lifestage
AdditionalCensusInfo
SOALower
SOAMiddle
Residency
HouseholdComposition
Business
Size
SICCode
LocationType
BranchCount
GroupID
ModelledTurnover

AFD Common API
Desktop Integration Guide – January 2023

 - 171 -

NationalSize
OnEditedRoll
Gender
Forename
MiddleInitial
Surname
DateOfBirth
DataSet
CouncilTaxBand
Product
Key
List

Raw
Name
OrganisationName
Department
SubBuilding
Building
Number
DependentThoroughfare
Thoroughfare
DoubleDependentLocality
DependentLocality
Town
PostalCounty
AbbreviatedPostalCounty
OptionalCounty
AbbreviatedPostalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Postcode
DPS
PostcodeFrom
PostcodeType
MailsortCode
Phone

AFD Common API
Desktop Integration Guide – January 2023

 - 172 -

GridE
GridN
Miles
Km
Latitude
Longitude
JustBuilt
UrbanRuralCode
UrbanRuralName
WardCode
WardName
Constituency
EERCode
EERName
AuthorityCode
Authority
LEACode
LEAName
TVRegion
Occupancy
OccupancyDescription
AddressType
AddressTypeDescription
UDPRN
NHSCode
NHSName
NHSRegionCode (Obsolete)
NHSRegionName (Obsolete)
PCTCode
PCTName
SubCountryName
DevolvedConstituencyCode
DevolvedConstituencyName
CensationCode
Affluence
Lifestage
AdditionalCensusInfo
Residency

AFD Common API
Desktop Integration Guide – January 2023

 - 173 -

HouseholdComposition
Business
Size
SICCode
LocationType
BranchCount
GroupID
ModelledTurnover
NationalSize

OnEditedRoll
Gender
Forename
MiddleInitial
Surname
DateOfBirth
DataSet
CouncilTaxBand
Product
Key
List

BS7666
Name
Identifier
BuildDate
Administrator
Language
Department
Organization
SubUnit
BuildingName
BuildingNumber
SubStreet
DeliveryStreet
SubLocality
DeliveryLocality
DeliveryTown

AFD Common API
Desktop Integration Guide – January 2023

 - 174 -

PostalCounty
AbbreviatedPostalCounty
OptionalCounty
AbbreviatedPostalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Code
DPS
PostcodeFrom
PostcodeType
MailsortCode
Phone
GridE
GridN
Miles
Km
Latitude
Longitude
JustBuilt
UrbanRuralCode
UrbanRuralName
WardCode
WardName
Constituency
EERCode
EERName
AuthorityCode
Authority
LEACode
LEAName
TVRegion
Occupancy
OccupancyDescription
AddressType
AddressTypeDescription
UDPRN
NHSCode

AFD Common API
Desktop Integration Guide – January 2023

 - 175 -

NHSName
NHSRegionCode (Obsolete)
NHSRegionName (Obsolete)
PCTCode
PCTName
SubCountryName
DevolvedConstituencyCode
DevolvedConstituencyName
CensationCode
Affluence
Lifestage
AdditionalCensusInfo
SOALower
SOAMiddle
Residency
HouseholdComposition
Business
Size
SICCode
LocationType
BranchCount
GroupID
ModelledTurnover
NationalSize
OnEditedRoll
Gender
Forename
MiddleInitial
Surname
DateOfBirth
DataSet
CouncilTaxBand
Product
Key
List

ZipAddress
Name

AFD Common API
Desktop Integration Guide – January 2023

 - 176 -

Recipient
Secondary
Primary
Urbanization
City
State
ZipCode
RecordType
CarrierRouteID
LACSStatus
FinanceNumber
CongressionalDistrict
CountyNumber
CountyName
CityAbbreviation
PostcodeFrom
Product
Key
List
Country
CountryISO

International
Name
Address1
Address2
Address3
Address4
Address5
Address6
Address7
OrganisationName
Department
SubBuilding
Building
Number
DependentThoroughfare

AFD Common API
Desktop Integration Guide – January 2023

 - 177 -

Thoroughfare
DoubleDependentLocality
DependentLocality
Town
PostalCountry
Postcode
Principality
Region
Cedex
PostcodeFrom
Product
Key
List
Country
CountryISO

Additional Fields for DX Customers

DX Customers with the DX data installed will also get the following additional
fields relating to DX with the Simple, Standard, Raw, BS7666, and
International Presets:

DXNumber
DXExchange
DXProfession

BankFinder – Except Account and Card Validation

A description of each of these fields is given in Appendix B

List
Key
List

Standard
Lookup
SortCode
BankBIC

AFD Common API
Desktop Integration Guide – January 2023

 - 178 -

BranchBIC
SubBranchSuffix
ShortBranchTitle
CentralBankCountryCode
CentralBankCountryName
SupervisoryBodyCode
SupervisoryBodyName
DeletedDate
BranchType
MainBranchSortCode
Location
BranchName
AlternativeBranchName
FullBranchTitle
OwnerBankShortName
OwnerBankFullName
OwnerBankCode
Organisation
Property
Street
Locality
Town
County
Postcode
Phone
Fax
ClearingSystem
BACSStatus
BACSStatusDescription
BACSLastChange
BACSClosedClearing
BACSRedirectedFromFlag
BACSRedirectedToSortCode
BACSSettlementBankCode
BACSSettlementBankShortName
BACSSettlementBankFullName
BACSSettlementBankSection
BACSSettlementBankSubSection

AFD Common API
Desktop Integration Guide – January 2023

 - 179 -

BACSHandlingBankCode
BACSHandlingBankShortName
BACSHandlingBankFullName
BACSHandlingBankStream
BACSAccountNumbers
BACSDDIVoucher
BACSDirectDebits
BACSBankGiroCredits
BACSBuildingSocietyCredits
BACSDividendInterestPayments
BACSDirectDebitInstructions
BACSUnpaidChequeClaims
CHAPSPStatus
CHAPSPStatusDescription
CHAPSPLastChange
CHAPSPClosedClearing
CHAPSPSettlementBankCode
CHAPSPSettlementBankShortName
CHAPSPSettlementBankFullName
CHAPSEStatus
CHAPSEStatusDescription
CHAPSELastChange
CHAPSEClosedClearing
CHAPSEEuroRoutingBICBank
CHAPSEEuroRoutingBICBranch
CHAPSESettlementBankCode
CHAPSESettlementBankShortName
CHAPSESettlementBankFullName
CHAPSEReturnIndicator
CCCCStatus
CCCCStatusDescription
CCCCLastChange
CCCCClosedClearing
CCCCSettlementBankCode
CCCCSettlementBankShortName
CCCCSettlementBankFullName
CCCCDebitAgencySortCode
CCCCReturnIndicator

AFD Common API
Desktop Integration Guide – January 2023

 - 180 -

Product
Key
List

Raw
Lookup
SortCode
BankBIC
BranchBIC
SubBranchSuffix
ShortBranchTitle
CentralBankCountryCode
CentralBankCountryName
SupervisoryBodyCode
SupervisoryBodyName
DeletedDate
BranchType
MainBranchSortCode
Location
BranchName
AlternativeBranchName
FullBranchTitle
OwnerBankShortName
OwnerBankFullName
OwnerBankCode
OrganisationName
SubBuilding
Building
Number
DependentThoroughfare
Thoroughfare
DoubleDependentLocality
DependentLocality
Town
County
Postcode
Phone
Fax

AFD Common API
Desktop Integration Guide – January 2023

 - 181 -

ClearingSystem
BACSStatus
BACSStatusDescription
BACSLastChange
BACSClosedClearing
BACSRedirectedFromFlag
BACSRedirectedToSortCode
BACSSettlementBankCode
BACSSettlementBankShortName
BACSSettlementBankFullName
BACSSettlementBankSection
BACSSettlementBankSubSection
BACSHandlingBankCode
BACSHandlingBankShortName
BACSHandlingBankFullName
BACSHandlingBankStream
BACSAccountNumbers
BACSDDIVoucher
BACSDirectDebits
BACSBankGiroCredits
BACSBuildingSocietyCredits
BACSDividendInterestPayments
BACSDirectDebitInstructions
BACSUnpaidChequeClaims
CHAPSPStatus
CHAPSPStatusDescription
CHAPSPLastChange
CHAPSPClosedClearing
CHAPSPSettlementBankCode
CHAPSPSettlementBankShortName
CHAPSPSettlementBankFullName
CHAPSEStatus
CHAPSEStatusDescription
CHAPSELastChange
CHAPSEClosedClearing
CHAPSEEuroRoutingBICBank
CHAPSEEuroRoutingBICBranch
CHAPSESettlementBankCode

AFD Common API
Desktop Integration Guide – January 2023

 - 182 -

CHAPSESettlementBankShortName
CHAPSESettlementBankFullName
CHAPSEReturnIndicator
CCCCStatus
CCCCStatusDescription
CCCCLastChange
CCCCClosedClearing
CCCCSettlementBankCode
CCCCSettlementBankShortName
CCCCSettlementBankFullName
CCCCDebitAgencySortCode
CCCCReturnIndicator
Product
Key
List

BankFinder – Account Validation Only

A description of each of these fields is given in Appendix B

Standard
SortCode
AccountNumber
RollNumber
TypeOfAccount
ClearingSystem
BuildingSocietyName

BankFinder – Card Validation Only

A description of each of these fields is given in Appendix B

Standard
CardNumber
ExpiryDate
CardType

AFD Common API
Desktop Integration Guide – January 2023

 - 183 -

Nearest
A description of each of these fields is given in Appendix C

List
Key
List

Standard
Lookup
GBGridE
GBGridN
NIGridE
NIGridN
Latitude
Longitude
TextualLatitude
TextualLongitude
Km
Miles
List
Key
Product
Max Records
…Followed by all your fields in the database table you are using with Nearest.

String Utility - Depreciated

Standard
Lookup
Outcode
Incode
Search
Replace

Grid Utility

Standard

AFD Common API
Desktop Integration Guide – January 2023

 - 184 -

Lookup
GBGridE
GBGridN
NIGridE
NIGridN
Latitude
Longitude
TextualLatitude
TextualLongitude
Km
Miles
GBGridEFrom
GBGridNFrom
NIGridEFrom
NIGridNFrom
LatitudeFrom
LongitudeFrom
TextualLatitudeFrom
TextualLongitudeFrom

Email Utility

Standard
Email

AFD Common API
Desktop Integration Guide – January 2023

 - 185 -

Appendix K. DX Professions

The following is a list of the professions current present in DX data:

Accountant or Auditor
Actuaries
Advertising Agency
Association or Institute
Bailiffs
Bank
Barrister
Betting
Builder
Building Society
Builders merchant
Brewery
Coal Company
Commercial Company
Computer Company
Conveyancer
Court or Sheriff’s Office
Crown Prosecution Service
Law Costs Draftsman
Educational Institutions
Electricity Company
Estate Agent
Financial Adviser
Gas Company
Other Government
Health and Medical
Health - Path Pak
Housing Association
Insurance Company or Broker
Insolvency Practitioner
Internal Accounts
Investigation Firm
Licensed Conveyancers

AFD Common API
Desktop Integration Guide – January 2023

 - 186 -

Leisure Company
Borough Council
County Council
City Council
District Council
Legal Aid
Metropolitan Borough Council
Metropolitan City Council
Libraries
Law Society
Legal Services
Legal Training Co
Media Company
Mailing Houses
Newspaper Distributor
National Newspaper
Oil Company
Optical
The Official Receiver
Miscellaneous
Other Legal Services
Publisher
Property Management Agents
Police Force
Printer
Probation Services
Patent Agent
Railways
Recruitment
Regional Newspaper
Retail Company
DX Service Centres
Service Company
Solicitor
Stationer
Stockbroker or Stock Exchange
Industrial Manufacturing Co
Surveyors

AFD Common API
Desktop Integration Guide – January 2023

 - 187 -

Telecommunications
Transport
Travel Agent - Abta
Water Company

AFD Common API
Desktop Integration Guide – January 2023

 - 188 -

Appendix L. Country and Country ISO Codes

The following is a list of the Countries supported by the International data
service (Country ISO code and name):

AFG Afghanistan
ALB Albania
DZA Algeria
ASM American Samoa
AND Andorra
AGO Angola
AIA Anguilla
ATA Antarctica
ATG Antigua and Barbuda
ARG Argentina
ARM Armenia
ABW Aruba
AUS Australia
AUT Austria
AZE Azerbaijan
BHS Bahamas
BHR Bahrain
BGD Bangladesh
BRB Barbados
BLR Belarus
BEL Belgium
BLZ Belize
BEN Benin
BMU Bermuda
BTN Bhutan
BOL Bolivia
BIH Bosnia and Herzegovina
BWA Botswana
BVT Bouvet Island
BRA Brazil
IOT British Indian Ocean Territory
VGB British Virgin Islands

AFD Common API
Desktop Integration Guide – January 2023

 - 189 -

BRN Brunei Darussalam
BGR Bulgaria
BFA Burkina Faso
BDI Burundi
KHM Cambodia
CMR Cameroon
CAN Canada
CPV Cape Verde
CYM Cayman Islands
CAF Central African Republic
TCD Chad
CHL Chile
CHN China
CXR Christmas Island
CCK Cocos Keeling Islands
COL Colombia
COM Comoros
COG Congo
COK Cook Islands
CRI Costa Rica
HRV Croatia
CUB Cuba
CYP Cyprus
CZE Czech Republic
COD Democratic Republic of Congo
DNK Denmark
DJI Djibouti
DMA Dominica
DOM Dominican Republic
TMP East Timor
ECU Ecuador
EGY Egypt
SLV El Salvador
GNQ Equatorial Guinea
ERI Eritrea
EST Estonia
ETH Ethiopia
FRO Faeroe Islands

AFD Common API
Desktop Integration Guide – January 2023

 - 190 -

FLK Falkland Islands
FJI Fiji
FIN Finland
FRA France
GUF French Guiana
PYF French Polynesia
ATF French Southern Territories
GAB Gabon
GMB Gambia
GEO Georgia
DEU Germany
GHA Ghana
GIB Gibraltar
GRC Greece
GRL Greenland
GRD Grenada
GLP Guadeloupe
GUM Guam
GTM Guatemala
GIN Guinea
GNB Guinea-Bissau
GUY Guyana
HTI Haiti
HMD Heard and Mc Donald Islands
HND Honduras
HKG Hong Kong
HUN Hungary
ISL Iceland
IND India
IDN Indonesia
IRN Iran
IRQ Iraq
IRL Ireland
ISR Israel
ITA Italy
CIV Ivory Coast
JAM Jamaica
JPN Japan

AFD Common API
Desktop Integration Guide – January 2023

 - 191 -

JOR Jordan
KAZ Kazakhstan
KEN Kenya
KIR Kiribati
KOS Kosovo
KWT Kuwait
KGZ Kyrgyzstan
LAO Laos
LVA Latvia
LBN Lebanon
LSO Lesotho
LBR Liberia
LBY Libya
LIE Liechtenstein
LTU Lithuania
LUX Luxembourg
MAC Macau
MKD Macedonia
MDG Madagascar
MWI Malawi
MYS Malaysia
MDV Maldives
MLI Mali
MLT Malta
MHL Marshall Islands
MTQ Martinique
MRT Mauritania
MUS Mauritius
MYT Mayotte
MEX Mexico
FSM Micronesia
MDA Moldova
MCO Monaco
MNG Mongolia
MNE Montenegro
MSR Montserrat
MAR Morocco
MOZ Mozambique

AFD Common API
Desktop Integration Guide – January 2023

 - 192 -

MMR Myanmar
NAM Namibia
NRU Nauru
NPL Nepal
NLD Netherlands
ANT Netherlands Antilles
NCL New Caledonia
NZL New Zealand
NIC Nicaragua
NER Niger
NGA Nigeria
NIU Niue
NFK Norfolk Island
PRK North Korea
MNP Northern Mariana Islands
NOR Norway
OMN Oman
PAK Pakistan
PLW Palau
PSE Palestine
PAN Panama
PNG Papua New Guinea
PRY Paraguay
PER Peru
PHL Philippines
PCN Pitcairn Islands
POL Poland
PRT Portugal
PRI Puerto Rico
QAT Qatar
REU Reunion
ROM Romania
RUS Russia
RWA Rwanda
BLM Saint Barth??lemy
SHN Saint Helena
KNA Saint Kitts and Nevis
LCA Saint Lucia

AFD Common API
Desktop Integration Guide – January 2023

 - 193 -

MAF Saint Martin
SPM Saint Pierre and Miquelon
VCT Saint Vincent and the Grenadines
WSM Samoa
SMR San Marino
STP Sao Tome and Principe
SAU Saudi Arabia
SEN Senegal
SRB Serbia
SYC Seychelles
SLE Sierra Leone
SGP Singapore
SVK Slovakia
SVN Slovenia
SLB Solomon Islands
SOM Somalia
ZAF South Africa
SGS South Georgia and South Sandwich Islands
KOR South Korea
ESP Spain
LKA Sri Lanka
SDN Sudan
SUR Suriname
SJM Svalbard and Jan Mayen Islands
SWZ Swaziland
SWE Sweden
CHE Switzerland
SYR Syria
TWN Taiwan
TJK Tajikistan
TZA Tanzania
THA Thailand
TGO Togo
TKL Tokelau
TON Tonga
TTO Trinidad and Tobago
TUN Tunisia
TUR Turkey

AFD Common API
Desktop Integration Guide – January 2023

 - 194 -

TKM Turkmenistan
TCA Turks and Caicos Islands
TUV Tuvalu
UGA Uganda
UKR Ukraine
ARE United Arab Emirates
UMI United States Minor Outlying Islands
VIR United States Virgin Islands
USA United States of America
URY Uruguay
UZB Uzbekistan
VUT Vanuatu
VAT Vatican
VEN Venezuela
VNM Vietnam
WLF Wallis and Futuna Islands
ESH Western Sahara
YEM Yemen
ZMB Zambia
ZWE Zimbabwe

Note GBR is United Kingdom and can be specified to use your normal UK
address management product.

