

AFD Common API

Unified Access to AFD Address
Management Solutions

Desktop Integration Guide

February 2016

AFD Common API
Desktop Integration Guide – February 2016

 - 2 -

Table of Contents

1. Introduction ... 3
2. Getting Started .. 3

3. Standard API .. 4
3.1. General Declarations ... 4

3.1.1. Type or Structure .. 4
3.1.2. Function Declaration ... 5
3.1.3. Field Specification String .. 5

3.1.4. Function Type Constants .. 8
3.1.5. Skip Constants – UK Address Management Only 10
3.1.6. Clearing System Constants – BankFinder Only 11

3.1.7. Success Code Constants ... 11
3.1.8. Error Code Constants ... 11
3.1.9. Refiner Status Code Constants .. 13
3.1.10. AFDErrorText Function ... 15
3.1.11. AFD RefinerCleaningText Function .. 15

3.1.12. Clear Function .. 15
3.1.13. afdInitDLL ... 15
3.1.14. List Functions – Address Management Only 16

3.1.15. Utility Declarations – Address Management Only..................... 19
3.1.16. String Utility Declarations – Depreciated and Unsupported 19
3.1.17. Grid Utility Declarations (UK Address Management Only) 20

3.1.18. Email Utility Declarations .. 22

3.2. Lookup Function .. 22
3.3. Search Function .. 27
3.4. List Fetch Function .. 31

3.5. Account Number Validation – BankFinder Only 33
3.6. Card Number Validation – BankFinder Only 36

3.7. List Functions – Address Management Only 37
3.8. String Utility Functions – Depreciated and Unsupported 41
3.9. Grid Utility Functions – UK Address Management Only 43
3.10. Email Utility Function .. 45

3.11. Clean Function – UK Address Management Only 46
4. Other Features .. 50

4.1. Selecting TraceMaster Datasets .. 50

4.2. Determining the Product in Use ... 50

4.3. Using Welsh Data in Postcode Plus .. 51
4.4. DX Member Data ... 53

5. Appendices ... 54

AFD Common API
Desktop Integration Guide – February 2016

 - 3 -

1. Introduction

The AFD Common API provides full access to the AFD API for all our
products. The API is easy to use and quick to implement, while balancing that
with providing full flexibility. This enables you to rapidly develop using the API
with practically any development environment to provide the data that you
require. All AFD products provide rapid lookup and search functionality
allowing you to implement address management solutions and provide bank
data, account and card validation.

Our address management products are fully interchangeable with the
Common API, meaning that you can include the name and all address fields
in your integration even if you are only using our lowest level Postcode
product. Your integration will then function fully with our Postcode Plus or
Names & Numbers product should you, or your customer, wish to upgrade in
the future. Similarly if you only develop for one product now, it’s easy to add
fields and features from another later without having to learn a whole new API.

To make life as easy as possible, the AFD Common API comes with a Wizard
which will generate sample projects and code for the major development
environments. The AFD Common API is also backed up by our free customer
support services. You can visit our website at www.afd.co.uk/support for full
developer support with using our API.

2. Getting Started

We recommend that for the most rapid development and to help you know
where to start that you use our API Wizard to generate a sample project for
your development environment. If your environment is not one that is listed,
then select one that is closest to your own and use that as a basis for your
coding. By looking at a sample project you can get a look and feel for how the
API works and what you can do with it and you can easily copy and paste the
code from that into your own and adapt it to meet your needs. Our sample
projects work in the way that your own application is most likely to work, but
also keep code to an absolute minimum, whilst being well commented, so that
you can transfer the code with ease. The API Wizard also provides the code
to go into a module or class in your application with all our API declarations
and constants included which you can copy and paste into your own
application. The code for lookup and search functionality is also provided and
can be similarly copied and pasted.

AFD Common API
Desktop Integration Guide – February 2016

 - 4 -

3. Standard API

3.1. General Declarations

3.1.1. Type or Structure

All code calling the Common API will need to include a module, class, or
header and cpp file (depending on the environment) which includes the
declarations required to use the AFD Common API. This file can be included
in any project and contains all you need to easily use the full functionality of
the API in accordance with your needs.

This code will start with a type or structure declaration which contains all the
fields for the product type that you are integrating. This will take account of
options you may have selected, for example the address format. By providing
all available fields you can easily see the data which may be available and
take advantage of it. You should always note that not all fields may return
data for all underlying products and not all fields are searchable. For a list of
the fields available in each product and to find out which ones are searchable
please refer to the appropriate appendix:

Appendix A – Address Management Fields
Appendix B – BankFinder Fields
Appendix C – Nearest Fields

While we would recommend that you keep all fields present, should you wish
to thin this out, you can remove any unwanted fields, as long as you also
remove them from the field specification string described below.

VB Type returning only basic Address fields and fields necessary for lookup and result

retrieval:

Type afdAddressData

 Lookup As String * 255

 Name As String * 120

 Organisation As String * 120

 Property As String * 120

 Street As String * 120

 Locality As String * 70

 Town As String * 30

 Postcode As String * 10

 PostcodeFrom As String * 8

 Key As String * 255

 List As String * 512

End Type

C++ Structure returning only basic Address fields and fields necessary for lookup and

result retrieval:

struct afdAddressData {

 char Lookup[256];

 char Name[121];

 char Organisation[121];

 char Property[121];

 char Street[121];

 char Locality[71];

 char Town[31];

AFD Common API
Desktop Integration Guide – February 2016

 - 5 -

 char Postcode[11];

 char PostcodeFrom[9];

 char Key[256];

 char List[513];

 afdAddressData(){ // constructor - zero the contents

 clear();

 }

 void clear(){

 memset(this,'\0',sizeof(*this));

 }

};

Note that the C++ declaration has fields one character larger than the VB one as we

are allowing for the addition of a null terminator. The C++ structure also has code

to clear the structure negating the need for an additional method to do this.

3.1.2. Function Declaration

Next comes the function declaration which is used to perform all operations
with the Common API. This is the AFDData function, found in the afddata.dll
(or afddata64.dll for 64-bit systems). It has the following parameters:

DataName (String)

Operation (Long)

tData (Any)
 fields to use to lookup and return results.

The function returns a long which is the result code. This will be >= 0 if the
function is successful, or < 0 in the case of an error (constants for this are
described below).

Example VB Declaration for AFDData:

Public Declare Function AFDData Lib "afddata.dll" (ByVal dataName As String, ByVal

operation As Long, tData As Any) As Long

Example C++ Declaration for AFDData:

long __stdcall AFDData(char* dataName, long operation, char* tData);

typedef long(__stdcall *AFDDATA)(char* dataName, long operation, char* tData);

3.1.3. Field Specification String

A field specification string is described next, this will vary between the different
product types (Address Management, BankFinder and Nearest). Its purpose
is to tell the Common API the product type in use and the fields required as
well as any additional options. It is a string in the following format:

{Data Name}@{Options}<{Refiner Options}>{{International}}@{Field List}

{Data Name} will be one of the following:

Address Address Management Products
BankFinder AFD BankFinder
Nearest* Nearest Integration
List Functions to list the alias localities for any address

AFD Common API
Desktop Integration Guide – February 2016

 - 6 -

 As well as retrieving lists of possible field values (Names
 & Numbers and TraceMaster only).
Grids Grid Reference related utility functions
Email Email utility function
String - Deprecated String utility functions

* With Nearest this will be followed by your database details in the following format:

Nearest:{DBType}:{DBName}:{UID}:{PWD}:{SQL}:{Primary}

Where:
DBType: The type of database, O=ODBC, A=Access, P=Paradox, X=Xbase
DBName: The DSN or database file name (should contain > in place of :)
UID: Any user name needed to connect to the database (ODBC Only)
PWD: Any password needed to connect to the database (ODBC Only)
SQL: The SQL string to use to query the data (N/A for FoxPro/Xbase)
Primary: The Primary Key field

{Options} - One or more of the following options can be used as required:

U – Specifies that the structure passed is in Unicode (Wide Bytes)

L – Specifies that list items should not contain a Tab. Tabs are useful as they
help align results correctly with each other, however some environments have
list boxes which do not support these and so this option allows them to be
omitted.

X – Specifies that Null Terminators should be used rather than space padded
values (particularly useful in languages such as C/C++)

F – Specifies that Individual Fields will be retrieved from the Common API
rather than a structure – see Appendix I for more information.

G - Specifies that approximate grid references for the locality or town of the
address will be supplied for any location which does not contain a grid
reference for that postcode (for example some non-geographical addresses,
Isle of Man and Channel Islands etc.).

R - Specifies that Royal Mail Postzon grid references are used in-preference
to GeoRef grid references.

{Field List} – A list of fields and there lengths to retrieve. (See Appendix A, B
or C as appropriate for a list of the possible fields). These are each specified
in the following format:

{Field Name 1}:{Field Length 1}@...{Field Name n}:{Field Length n}

Where
{Field Name x} – Specifies the name of the field
{Field Length x} – Specifies the length of the field

Example VB Declaration for the Field Specification string matching the VB type

previously given:

AFD Common API
Desktop Integration Guide – February 2016

 - 7 -

Public Const afdFieldSpec =

"Address@@Lookup:255@Name:120@Organisation:120@Property:120@Street:120@Locality:70@Tow

n:30@Postcode:10@PostcodeFrom:8@Key:255@List:512"

Example C++ Declaration for the Field Specification string matching the C++ structure

previously given:

static char afdFieldSpec[2048] =

"Address@LX@Lookup:256@Name:121@Organisation:121@Property:121@Street:121@Locality:71@T

own:31@Postcode:11@PostcodeFrom:9@Key:256@List:513";

Note that when using Nearest the GBGridE, GBGridN, and List fields also
specify the name of the field in your database table to use for that field in
pointed brackets, e.g.

GBGridE<GridE>:10@GBGridN<GridN>:10@List<Miles, Title>:10

{Refiner Options}
Refiner API users can also add a set of advanced cleaning options, if they are
required, to the end of the options portion of the field specification string,
enclosing them in pointed brackets, e.g. <0AS>.

The options supported are as follows: (Please see the main Refiner manual
for more detail regarding each of these options)

0 - Specifies the default cleaning mode where the address is fully cleaned

1 - Specifies that the postcode should be verified only

2 – Specifies that only full matches should be returned

3 – Uses Attach Mode only (fields are returned based on the postcode)

N – Use non-separated fields (Useful for databases where fields are not
seperated, e.g. the street and town are entered on the same line with no
comma etc. between them)

A – No Ambiguous Matches (do not return list of addresses to choose from if
the address cannot be uniquely matched)

S – No Suggested Matches (do not return a suggested match along with the
original address if the address cannot be matched but there is a possible
unique match)

U – Assume the Postcode is correct (this option allows less reliable matching
on the assumption that the postcode is correct if the address cannot otherwise
be verified. In Attach mode this allows a property and postcode to be
matched)

T – Give Ambiguous Matches in Preference to Street Level (if an address
cannot be uniquely matched to an individual property the original property
information is normally retained, this option gives the ambiguous addresses to
choose from instead).

AFD Common API
Desktop Integration Guide – February 2016

 - 8 -

P – Match PO Box Last (Some PO Box addresses contain some Street
address information too even though the address is meant for a PO Box. If
you wish Refiner to try and match it to a street address first then select this
option).

L – Retain Alias Localities (If the address is matched using an alias locality
this will be retained in the address – Alias Localities are not normally retained
as they are not required for the address to be deliverable).

O – Do not move data to Organisation (Normally Refiner will put additional
address data for street level only matches in the property field unless they
look like an Organisation or there is already a property. Specifying this option
ensures Refiner never returns such data in the Organisation field - useful if
you are not going to use the Organisation field returned).

W – Do not use the Default DPS (if an address is not matched to a full
Delivery Point Record, a default of 9Z is assigned which can still be used for
printing bar codes etc., if you do not wish this to be used then use this option)

F – Do not use Field Placement (By default if an address cannot be matched
Refiner attempts to format the address correctly on return, if you would rather
it was left “as-is” then use this option.

3.1.4. Function Type Constants

Next a set of constants are defined which specify the lookup and search
operations available. The DLL supports the following operations:

Constant Value Description

AFD_POSTCODE_LOOKUP 0 Carries out a standard
postcode (or zipcode) lookup
from the data specified in the
Lookup field. (Not BankFinder)

AFD_POSTCODE_PROPERTY_LOOKUP 1 Carries out a lookup based on
a postcode or combination of
property name/number and a
postcode. (Address
Management Only)

AFD_MULTIPLE_FASTFIND_LOOKUP 1 Like a FastFind lookup for
Nearest but where a specified
locality or town matches
multiple locations the user is
presented with a list to choose
from. (Nearest Only)

AFD_FASTFIND_LOOKUP 2 Full fast-find functionality,
allowing either a postcode or
an address portion to be
entered to find the address.

AFD_SEARCH 3 Reverse search, set fields to
specify reverse search criteria.
(See Appendix A for details of
which fields are searchable in
which products). Fields not

AFD Common API
Desktop Integration Guide – February 2016

 - 9 -

searchable will be ignored if
specified.

AFD_RETRIEVE_RECORD 4 Retrieves a previous record
from a lookup/search. Useful
when you add items to a list
box, using the List field and
then wish to retrieve the item
the user clicks on. Set the
Key field to use this operation
with the value of the Key field
that was returned from the
original lookup/search for the
record you want.

AFD_ACCOUNT_VALIDATE 5 Used to validate a supplied
sortcode and account number
(BankFinder only)

AFD_CARD_VALIDATE 6 Used to validate a supplied
card number and optional
expiry date (BankFinder only)

AFD_CLEAN 7 Used to clean an address
(requires a Refiner API
license)

AFD_GET_NEXT 32 Should be specified with any
of the lookup or search
operations for subsequent
calls to obtain the next
matching result
(END_OF_SEARCH,-6, will
be returned if there are no
further results to return).

AFD_LIST_BOX 64 Specify with any of the
lookup/search operations if
you wish the DLL to display a
listbox for you rather than
having to use your own in the
case of multiple results. Calls
to AFD_GET_NEXT are not
needed in this case as the API
will only return the result the
user selects.

AFD_SHOW_ERROR 128 Set this option if you require
the DLL to display any error
message (e.g. if no results are
found) to the user itself.

Example VB Constant Declarations:

Public Const AFD_POSTCODE_LOOKUP = 0

Public Const AFD_POSTCODE_PROPERTY_LOOKUP = 1

Public Const AFD_MULTIPLE_FASTFIND_LOOKUP = 1

Public Const AFD_FASTFIND_LOOKUP = 2

Public Const AFD_SEARCH = 3

Public Const AFD_RETRIEVE_RECORD = 4

Public Const AFD_ACCOUNT_VALIDATE = 5

Public Const AFD_CARD_VALIDATE = 6

Public Const AFD_CLEAN = 7

Public Const AFD_GET_NEXT = 32

Public Const AFD_LIST_BOX = 64

Public Const AFD_SHOW_ERROR = 128

Example C++ Constant Declarations:

// Function Type Constants

AFD Common API
Desktop Integration Guide – February 2016

 - 10 -

#define AFD_POSTCODE_LOOKUP 0

#define AFD_POSTCODE_PROPERTY_LOOKUP 1

#define AFD_MULTIPLE_FASTFIND_LOOKUP 1

#define AFD_FASTFIND_LOOKUP 2

#define AFD_SEARCH 3

#define AFD_RETRIEVE_RECORD 4

#define AFD_ACCOUNT_VALIDATE 5

#define AFD_CARD_VALIDATE 6

#define AFD_CLEAN 7

#define AFD_GET_NEXT 32

#define AFD_LIST_BOX 64

#define AFD_SHOW_ERROR 128

3.1.5. Skip Constants – UK Address Management Only

For address management products skip constants are provided next which
can be added to the operation parameter for calls to the AFDData function to
skip records, for example to return the first record on a postcode only.

The available options are as follows:

Constant Value Description

AFD_NO_SKIP 0 Default – all matching records are returned

AFD_ADDRESS_SKIP 512 Only the first record per address (e.g. first listed
resident) is returned. Only has any effect in
Names & Numbers.

AFD_POSTCODE_SKIP 1024 Only the first record per postcode is returned.

AFD_SECTOR_SKIP 1536 Only the first record in each postcode sector is
returned. (A postcode sector is the portion of
the postcode before the space plus the first
digit after it, e.g. B11 1 is a sector).

AFD_OUTCODE_SKIP 2048 Only the first record per Outcode is returned.
The Outcode is the portion of the postcode
before the space, e.g. B11.

AFD_POST_TOWN_SKIP 2560 Only the first record per Post Town, e.g.
Birmingham is returned.

AFD_POSTCODE_AREA_SKIP 3072 Only the first record per Postcode Area is
returned. A Postcode Area is the letters at the
start of the postcode, e.g. B11 1AA is in
Postcode Area B, IM8 is in Postcode Area IM.

Example VB Constant Declarations:

Public Const AFD_NO_SKIP = 0

Public Const AFD_ADDRESS_SKIP = 512

Public Const AFD_POSTCODE_SKIP = 1024

Public Const AFD_SECTOR_SKIP = 1536

Public Const AFD_OUTCODE_SKIP = 2048

Public Const AFD_POST_TOWN_SKIP = 2560

Public Const AFD_POSTCODE_AREA_SKIP = 3072

Example C++ Constant Declarations:

// Function Type Constants

#define AFD_NO_SKIP 0

#define AFD_ADDRESS_SKIP 512

#define AFD_POSTCODE_SKIP 1024

#define AFD_SECTOR_SKIP 1536

#define AFD_OUTCODE_SKIP 2048

#define AFD_POST_TOWN_SKIP 2560

#define AFD_POSTCODE_AREA_SKIP 3072

AFD Common API
Desktop Integration Guide – February 2016

 - 11 -

3.1.6. Clearing System Constants – BankFinder Only

The clearing system constants allows you to restrict the results that come
back to those which are solely on the UK (BACS) Clearing System or the Irish
(IPSO Clearing System), or both systems. Obviously if you are only able to
clear through the UK clearing system you should specify this to return results
for the UK system only. This constant should be added to the operation
parameter for calls to the AFDData function.

The available options are as follows:

Constant Value Description

AFD_BOTH_CLEARINGS 0 Default – all matching records are returned

AFD_UK_CLEARING 512 Only records on the UK (BACS) Clearing
System are returned

AFD_IRISH_CLEARING 1024 Only records on the Irish (IPSO) Clearing
System are returned

Example VB Constant Declarations:

Public Const AFD_BOTH_CLEARINGS = 0

Public Const AFD_UK_CLEARING = 512

Public Const AFD_IRISH_CLEARING = 1024

Example C++ Constant Declarations:

// Function Type Constants

#define AFD_BOTH_CLEARINGS 0

#define AFD_UK_CLEARING 512

#define AFD_IRISH_CLEARING 1024

3.1.7. Success Code Constants

These specify the possible success codes returned from any API function:

Constant Value Description

AFD_RECORD_BREAK 0 The search/lookup has not completed but may take some
time and so is returning to give the user the option to
cancel a long search.

AFD_SUCCESS 1 The function was successful and a matching record has
been returned.

AFD_SUCCESS_
NO_VALIDATION

2 This applies only to Bankfinder account number validation
and indicates that the function was successful and the
account number should be taken as valid. However, as
account numbers on this sortcode cannot be validated you
may wish to double check it is correct.

3.1.8. Error Code Constants

These specify the possible errors returned from any API function:

Constant Value Description

AFD_ ERROR_INVALID_FIELDSPEC -1 The field specification string specified
is invalid. This shouldn’t be returned
under normal circumstances.

AFD_ ERROR_NO_RESULTS_FOUND -2 No records matching your lookup or

AFD Common API
Desktop Integration Guide – February 2016

 - 12 -

search criteria were found.

AFD_ERROR_INVALID_
... _RECORD_NUMBER

-3 The record number provided (e.g.
when re-retrieving an item from a list
box) is invalid.

AFD_ERROR_OPENING_FILES -4 An error occurred attempting to open
the AFD data files. Check they are
correctly installed.

AFD_ERROR_FILE_READ -5 An error occurred reading the data.
Likely to be due to corrupt data so
software may need to be re-installed.

AFD_ERROR_END_OF_SEARCH -6 End of Search (when the last result
has already been called off –
indicates there are no more results to
return).

AFD_DATA_LICENSE_ERROR -7 Indicates there is an error with the
product registration. Normally due to
it having expired. Run the Welcome
program to re-register the software.

AFD_ERROR_CONFLICTING_
.. _SEARCH_PARAMETERS

-8 Occurs if you attempt to search for a
Name and Organisation at the same
time. Also occurs with Postcode Plus
if the UDPRN field is searched for at
the same time as any other field.

AFD_USER_CANCELLED -99 Indicates that the user clicked the
cancel button if the DLL internal list
box was used.

The following fields apply to BankFinder validation operations only

AFD_ERROR_SORTCODE_NOT_FOUND -12 The sort code specified for an
account number validation does not
exist.

AFD_ERROR_INVALID_SORTCODE -13 The sortcode specified for an account
number validation is invalid.

AFD_ERROR_INVALID_ACCOUNT_NUMBE
R

-14 The account number specified for an
account number validation is invalid.

AFD_ERROR_INVALID_ROLL_NUMBER -21 The sort code and account number
given are for a building society
account which also requires a roll
number for account credits. No roll
number has been supplied or is
incorrect for this building society.

AFD_ERROR_INVALID_IBAN -22 The International Bank Account
Number provided is in an invalid
format

AFD_ERROR_UNRECOGNISED_COUNTRY -23 The IBAN provided contains a country
that is not recognised as valid

AFD_ERROR_IBAN_MISMATCH -24 Both an IBAN and Account Number
was provided and these details do not
match.

AFD_ERROR_INVALID_EXPIRY -15 The expiry date specified for a card
validation is invalid.

AFD_ERROR_CARD_EXPIRED -16 The card has expired

AFD_ERROR_INVALID_CARD_NUMBER -18 The card number specified for a card
validation is invalid.

AFD_ERROR_VISA_ATM_ONLY -19 The card number specified is a Visa
card which can be used in an ATM
only.

AFD_ERROR_UNRECOGNISED_
.. _CARD_TYPE

-20 While the card number appears to be
a valid one, the card is not of any of

AFD Common API
Desktop Integration Guide – February 2016

 - 13 -

the known types and is therefore
unlikely to be acceptable for payment.

Example VB Constant Declarations:

Public Const AFD_ERROR_INVALID_FIELDSPEC = -1

Public Const AFD_ERROR_NO_RESULTS_FOUND = -2

Public Const AFD_ERROR_INVALID_RECORD_NUMBER = -3

Public Const AFD_ERROR_OPENING_FILES = -4

Public Const AFD_ERROR_FILE_READ = -5

Public Const AFD_ERROR_END_OF_SEARCH = -6

Public Const AFD_ERROR_DATA_LICENSE_ERROR = -7

Public Const AFD_ERROR_CONFLICTING_SEARCH_PARAMETERS = -8

Public Const AFD_USER_CANCELLED = -99

Example C++ Constant Declarations:

#define AFD_ERROR_INVALID_FIELDSPEC -1

#define AFD_ERROR_NO_RESULTS_FOUND -2

#define AFD_ERROR_INVALID_RECORD_NUMBER -3

#define AFD_ERROR_OPENING_FILES -4

#define AFD_ERROR_FILE_READ -5

#define AFD_ERROR_END_OF_SEARCH -6

#define AFD_ERROR_DATA_LICENSE_ERROR -7

#define AFD_ERROR_CONFLICTING_SEARCH_PARAMETERS -8

#define AFD_USER_CANCELLED -99

3.1.9. Refiner Status Code Constants

Refiner clean operations return a cleaning constant >= 100 or <= -100 which
indicates the status of the cleaning operation. These constants are as follows:

Constant Value Description

AFD_ REFINER_PAF_MATCH 100 Address verified from Postcode and
matches a record in PAF identically.

AFD_REFINER_POSTCODE_MATCH 200 Address verified from the Postcode
and matches a record in PAF with
some correction.

AFD_REFINER_CHANGED_POSTCODE 201 Address verified from a postcode
which was substituted due to a Royal
Mail recoding and now matches a
record in PAF.

AFD_REFINER_ASSUME_POSTCODE_
CORRECT

202 Match was made with the Assume
Postcode Correct option enabled only
and the address could only be verified
on the assumption that the postcode
was correct.

AFD_REFINER_ASSUME_CHANGED_
POSTCODE_CORRECT

203 Match was made with the Assume
Postcode Correct option enabled and
the address could only be verified on
the assumption that the postcode was
correct after a Royal Mail recoding
change.

AFD_REFINER_ASSUME_POSTCODE_
ADDED_PROPERTY

204 Match was made with the Assume
Postcode Correct option enabled and
the address could only be verified on
the assumption that the postcode was
correct and the property was added
in.

AFD_REFINER_ASSUME_CHANGED_
POSTCODE_ADDED_PROPERTY

205 Match was made with the Assume
Postcode Correct option enabled and

AFD Common API
Desktop Integration Guide – February 2016

 - 14 -

the address could only be verified on
the assumption that the postcode was
correct after a Royal Mail recoding
change and the property was added
in.

AFD_REFINER_FULL_DPS_MATCH 300 Address verified to PAF with some
correction, looking wider than just the
specified Postcode.

AFD_REFINER_FULL_DPS_MATCH_NO_
ORG

301 Address verified to PAF with
ambiguous organisation which was
not in the original address so has
been omitted.

AFD_REFINER_FULL_DPS_MATCH_
LIMITED

302 Match was made with the Assume
Postcode Correct option enabled and
the Address was verified to PAF to a
more limited degree.

AFD_REFINER_STREET_MATCH 400 Address verified to Street Level, i.e.
the property was not on PAF, but a
unique match to the street was
identified on a single postcode.

AFD_REFINER_NO_MATCH_FOUND -101 No Match Found - Refiner has been
unable to match this record.

AFD_REFINER_AMBIGUOUS_POSTCODE -102 Ambiguous Postcode Match - Refiner
has matched this record to Street
Level but cannot determine which is
the correct Postcode and so has
presented each of the possibilities.

AFD_REFINER_SUGGEST_RECORD -103 Suggested Match. Refiner has given
a possibility that this address could
match to as it is unique but there was
not enough to be certain of a correct
match.

AFD_REFINER_AMBIGUOUS_MATCH -104 Ambiguous Match. Refiner has given
several possibilities that this address
could match to.

AFD_REFINER_INTERNATIONAL_
ADDRESS

-105 This address was detected as being
an International Address and
therefore cannot be cleaned as data
is only present for cleaning UK,
Channel Isles and Isle of Man
addresses.

AFD_REFINER_NO_RECORD_DATA -106 No record data was supplied. Refiner
cannot clean this address as no
address data was given.

Example VB Constant Declarations:

Public Const AFD_REFINER_PAF_MATCH = 100

Public Const AFD_REFINER_POSTCODE_MATCH = 200

Public Const AFD_REFINER_CHANGED_POSTCODE = 201

Public Const AFD_REFINER_ASSUME_POSTCODE_CORRECT = 202

Public Const AFD_REFINER_ASSUME_CHANGED_POSTCODE_CORRECT = 203

Public Const AFD_REFINER_ASSUME_POSTCODE_ADDED_PROPERTY = 204

Public Const AFD_REFINER_ASSUME_CHANGED_POSTCODE_ADDED_PROPERTY = 205

Public Const AFD_REFINER_FULL_DPS_MATCH = 300

Public Const AFD_REFINER_FULL_DPS_MATCH_NO_ORG = 301

Public Const AFD_REFINER_FULL_DPS_MATCH_LIMITED = 302

Public Const AFD_REFINER_STREET_MATCH = 400

Public Const AFD_REFINER_NO_MATCH_FOUND = -101

Public Const AFD_REFINER_AMBIGUOUS_POSTCODE = -102

Public Const AFD_REFINER_SUGGEST_RECORD = -103

Public Const AFD_REFINER_AMBIGUOUS_MATCH = -104

AFD Common API
Desktop Integration Guide – February 2016

 - 15 -

Public Const AFD_REFINER_INTERNATIONAL_ADDRESS = -105

Public Const AFD_REFINER_NO_RECORD_DATA = -106

Example C++ Constant Declarations:

#define AFD_REFINER_PAF_MATCH 100

#define AFD_REFINER_POSTCODE_MATCH 200

#define AFD_REFINER_CHANGED_POSTCODE 201

#define AFD_REFINER_ASSUME_POSTCODE_CORRECT 202

#define AFD_REFINER_ASSUME_CHANGED_POSTCODE_CORRECT 203

#define AFD_REFINER_ASSUME_POSTCODE_ADDED_PROPERTY 204

#define AFD_REFINER_ASSUME_CHANGED_POSTCODE_ADDED_PROPERTY 205

#define AFD_REFINER_FULL_DPS_MATCH 300

#define AFD_REFINER_FULL_DPS_MATCH_NO_ORG 301

#define AFD_REFINER_FULL_DPS_MATCH_LIMITED 302

#define AFD_REFINER_STREET_MATCH 400

#define AFD_REFINER_NO_MATCH_FOUND -101

#define AFD_REFINER_AMBIGUOUS_POSTCODE -102

#define AFD_REFINER_SUGGEST_RECORD -103

#define AFD_REFINER_AMBIGUOUS_MATCH -104

#define AFD_REFINER_INTERNATIONAL_ADDRESS -105

#define AFD_REFINER_NO_RECORD_DATA -106

3.1.10. AFDErrorText Function

This is a helper function that the Wizard will generate, which will convert an
error code (return value less than zero) to a message which explains the
error. This makes it easy to simply use this function to obtain text to display in
the case of an error. Text is included for each of the error codes listed in the
Error Code Constants section above.

3.1.11. AFD RefinerCleaningText Function

This is a helper function that the Wizard will generate, which will convert a
return code from the Common API when using the AFD_CLEAN option to a
message which explains the error. This makes it easy to simply use this
function to obtain text to display in the case of an error. Text is included for
each of the error codes listed in the Refiner Status Code Constants section
above. Please note that this function is only useful if you are using Refiner
API functionality with the appropriate license.

3.1.12. Clear Function

The wizard also generates a helper function to clear the AFD Type or
Structure, which you should call prior to carrying out an operation using the
API. This is either called ClearAFDAddressData or ClearAFDBankData for
Address Management products and BankFinder respectively. The differing
names allow these to co-exist in the same module if desired when using both
products.

Note: This does not apply to C++ code as they include a clear function in the
structure declaration itself.

3.1.13. afdInitDLL

Where necessary, e.g. in C++ a function is also included which will load the
DLL and locate the AFDData function:

AFD Common API
Desktop Integration Guide – February 2016

 - 16 -

3.1.14. List Functions – Address Management Only

With Postcode Plus, Names & Numbers and TraceMaster products you can
obtain the alias localities for any address or postcode if required. These are
non-postally required localities held by Royal Mail which can or may be
included on an address if desired. An example of this would be including
Wimbledon for an address in London. You should note that these are stored
at postal sector level (e.g. SW19 1) and there are often multiple entries for an
address so a locality being returned does not mean it is necessarily the best
one for the particular address you are viewing.

For Names & Numbers and TraceMaster products only it is also possible to
obtain a list of possible values for most fields, e.g. all the Mailsort codes
present, business descriptions, etc. You can also specify the start value of
the field, e.g. return all surnames present starting with “Smith”.

When using International data you can also use the List functions to obtain a
list of all available countries (names or ISO codes).

To use these functions an AFDListData structure should be declared
containing the following fields:

Field Name Length Description

Lookup 255 In the case of retrieving an alias
locality this should be the postcode or
key of the address to obtain the alias
localities for.

In the case of Names & Numbers or
TraceMaster lists this should either be
blank to retrieve the full list, or contain
the value you wish entries to start
with.

List 255 Each matching locality name or list
entry is returned, in turn, into this
field.

Product 40 Optional: Would indicate the product
used if desired.

A afdListFieldSpec string should also be declared and works as described in
section 4.1.3.

The constants you can use with this function to specify the list operation you
wish to perform are as follows:

Constant Value Description

AFD_LIST_ALIAS_LOCALITY 0 Returns all alias localities for the
sector that the specified postcode or
key resides in.

The following are applicable when using International data only:

AFD_LIST_COUNTRY_ISO 3 Will return the ISO codes of all
available countries.

AFD Common API
Desktop Integration Guide – February 2016

 - 17 -

AFD_LIST_COUNTRY 4 Will return the names of all available
countries.

The following are applicable to Names & Numbers and TraceMaster Products Only:
These all return a list of all entries of the data item specified in the data
Setting the lookup parameter will restrict matches to only those items starting with the specified
string.

AFD_LIST_FORENAME 10 Returns Forenames (first names).

AFD_LIST_SURNAME 11 Returns Surnames

AFD_LIST_ORGANISATION 12 Returns Organisations

AFD_LIST_PROPERTY 13 Returns Properties

AFD_LIST_STREET 14 Returns Streets

AFD_LIST_LOCALITY 15 Returns Localities

AFD_LIST_TOWN 16 Returns Postal Towns

AFD_LIST_COUNTY 17 Returns Counties (This includes
Postal, Traditional and Administrative
County names)

AFD_LIST_MAILSORT_CODE 18 Returns Mailsort codes

AFD_LIST_URBAN_RURAL_CODE 19 Returns Urban Rural Codes

AFD_LIST_URBAN_RURAL_NAME 20 Returns Urban Rural Names

AFD_LIST_WARD_CODE 21 Returns Ward Codes

AFD_LIST_WARD_NAME 22 Returns Ward Names

AFD_LIST_CONSTITUENCY 23 Returns Constituencies

AFD_LIST_EER_CODE 24 Returns EER Codes (European
Electoral Region Codes)

AFD_LIST_EER_NAME 25 Returns EER Names

AFD_LIST_AUTHORITY_CODE 26 Returns Local / Unitary Authority
Codes

AFD_LIST_AUTHORITY 27 Returns Authority Names

AFD_LIST_LEA_CODE 28 Returns LEA Codes (Local Education
Authority)

AFD_LIST_LEA_NAME 29 Returns LEA Names

AFD_LIST_TV_REGION 30 Returns TV Regions

AFD_LIST_NHS_CODE 31 Returns NHS Codes

AFD_LIST_NHS_NAME 512 Returns NHS Names

AFD_LIST_NHS_REGION_CODE 513 Returns NHS Region Codes

AFD_LIST_NHS_REGION_NAME 514 Returns NHS Region Names

AFD_LIST_PCT_CODE 515 Return CCG Codes

AFD_LIST_PCT_NAME 516 Return CCG Names

AFD_LIST_CENSATION_CODE 517 Returns Censation Codes

AFD_LIST_AFFLUENCE 518 Returns Censation Affluence Codes
with descriptions

AFD_LIST_LIFESTAGE 519 Returns Censation Lifestage Codes
with descriptions

AFD_LIST_ADDITIONAL_CENSUS_INFO 520 Returns Censation Additional
Information with descriptions.

AFD_LIST_HOUSEHOLD_COMPOSITION 521 Returns Household composition
codes with descriptions.

AFD_LIST_BUSINESS 522 Returns Business descriptions

AFD_LIST_SIZE 523 Returns Company Size catagories

AFD_LIST_SIC_CODE 524 Returns SIC Codes

AFD_LIST_COUNCIL_TAX_BAND 525 Returns Council Tax Bands

AFD_LIST_CONSTITUENCY_CODE 528 Returns Constituency Codes

AFD_LIST_SUB_COUNTRY_NAME 529 Returns Sub Country Names

AFD_LIST_DEVOLVED_CONSTITUENCY_
CODE

531 Returns Devolved Constituency
Codes

AFD_LIST_DEVOLVED_CONSTITUENCY_
NAME

532 Returns Devolved Constituency
Names

AFD Common API
Desktop Integration Guide – February 2016

 - 18 -

Example VB Constant Declarations for List Functions:

Public Const AFD_LIST_ALIAS_LOCALITY = 0

Public Const AFD_LIST_COUNTRY_ISO = 3

Public Const AFD_LIST_COUNTRY = 4

Public Const AFD_LIST_FORENAME = 10

Public Const AFD_LIST_SURNAME = 11

Public Const AFD_LIST_ORGANISATION = 12

Public Const AFD_LIST_PROPERTY = 13

Public Const AFD_LIST_STREET = 14

Public Const AFD_LIST_LOCALITY = 15

Public Const AFD_LIST_TOWN = 16

Public Const AFD_LIST_COUNTY = 17

Public Const AFD_LIST_MAILSORT_CODE = 18

Public Const AFD_LIST_URBAN_RURAL_CODE = 19

Public Const AFD_LIST_URBAN_RURAL_NAME = 20

Public Const AFD_LIST_WARD_CODE = 21

Public Const AFD_LIST_WARD_NAME = 22

Public Const AFD_LIST_CONSTITUENCY = 23

Public Const AFD_LIST_EER_CODE = 24

Public Const AFD_LIST_EER_NAME = 25

Public Const AFD_LIST_AUTHORITY_CODE = 26

Public Const AFD_LIST_AUTHORITY = 27

Public Const AFD_LIST_LEA_CODE = 28

Public Const AFD_LIST_LEA_NAME = 29

Public Const AFD_LIST_TV_REGION = 30

Public Const AFD_LIST_NHS_CODE = 31

Public Const AFD_LIST_NHS_NAME = 512

Public Const AFD_LIST_NHS_REGION_CODE = 513

Public Const AFD_LIST_NHS_REGION_NAME = 514

Public Const AFD_LIST_PCT_CODE = 515

Public Const AFD_LIST_PCT_NAME = 516

Public Const AFD_LIST_CENSATION_CODE = 517

Public Const AFD_LIST_AFFLUENCE = 518

Public Const AFD_LIST_LIFESTAGE = 519

Public Const AFD_LIST_ADDITIONAL_CENSUS_INFO = 520

Public Const AFD_LIST_HOUSEHOLD_COMPOSITION = 521

Public Const AFD_LIST_BUSINESS = 522

Public Const AFD_LIST_SIZE = 523

Public Const AFD_LIST_SIC_CODE = 524

Public Const AFD_LIST_COUNCIL_TAX_BAND = 525

Example C++ Constant Declarations for List Functions:

// Function Type Constants

#define AFD_LIST_ALIAS_LOCALITY 0

#define AFD_LIST_COUNTRY_ISO 3

#define AFD_LIST_COUNTRY 4

#define AFD_LIST_FORENAME 10

#define AFD_LIST_SURNAME 11

#define AFD_LIST_ORGANISATION 12

#define AFD_LIST_PROPERTY 13

#define AFD_LIST_STREET 14

#define AFD_LIST_LOCALITY 15

#define AFD_LIST_TOWN 16

#define AFD_LIST_COUNTY 17

#define AFD_LIST_MAILSORT_CODE 18

#define AFD_LIST_URBAN_RURAL_CODE 19

#define AFD_LIST_URBAN_RURAL_NAME 20

#define AFD_LIST_WARD_CODE 21

#define AFD_LIST_WARD_NAME 22

#define AFD_LIST_CONSTITUENCY 23

#define AFD_LIST_EER_CODE 24

#define AFD_LIST_EER_NAME 25

#define AFD_LIST_AUTHORITY_CODE 26

#define AFD_LIST_AUTHORITY 27

#define AFD_LIST_LEA_CODE 28

#define AFD_LIST_LEA_NAME 29

#define AFD_LIST_TV_REGION 30

#define AFD_LIST_NHS_CODE 31

#define AFD_LIST_NHS_NAME 512

#define AFD_LIST_NHS_REGION_CODE 513

#define AFD_LIST_NHS_REGION_NAME 514

#define AFD_LIST_PCT_CODE 515

#define AFD_LIST_PCT_NAME 516

AFD Common API
Desktop Integration Guide – February 2016

 - 19 -

#define AFD_LIST_CENSATION_CODE 517

#define AFD_LIST_AFFLUENCE 518

#define AFD_LIST_LIFESTAGE 519

#define AFD_LIST_ADDITIONAL_CENSUS_INFO 520

#define AFD_LIST_HOUSEHOLD_COMPOSITION 521

#define AFD_LIST_BUSINESS 522

#define AFD_LIST_SIZE 523

#define AFD_LIST_SIC_CODE 524

#define AFD_LIST_COUNCIL_TAX_BAND 525

3.1.15. Utility Declarations – Address Management Only

These utility functions are not necessary for core address or bank validation
functionality, but provide additional functionality that may be useful in your
application. For full details of what these functions can do please refer to
section 4.7 of this document.

3.1.16. String Utility Declarations – Depreciated and Unsupported

These are provided for compatibility with existing applications which may
depend on them but for new developments we would recommend you use in-
built functions which are included with most modern development
environments. For the String Utility functions an AFDStringData structure is
declared, containing the fields specified in Appendix E of this manual for
String functions. An afdStringFieldSpec is also declared and works in the
same way as the general field specification string documented earlier in this
section. The following operation constants are also defined which are used to
specify the string operation you wish to perform:

Constant Value Description

AFD_ STRING_SEARCH_REPLACE 0 All occurrences in the string specified
in the Lookup field of the string
specified in the Search field are
replaced with the string in the
Replace field.

AFD_STRING_SEARCH_REPLACE_CASE 1 This is the same as
AFD_STRING_SEARCH_REPLACE
but is case sensitive.

AFD_STRING_CAPITALISE 2 This corrects the capitalisation of the
string specified in the Lookup field.
For example ‘commercial STREET’
would become ‘Commercial Street’.

AFD_STRING_CLEAN_LINE 3 This cleans the string specified in the
Lookup field by removing spurious
characters that should not be in an
address line, e.g. a trailing comma.

AFD_STRING_CHECK_POSTCODE 4 This checks if the string specified in
the Lookup field looks like a postcode.

AFD_STRING_CLEAN_POSTCODE 5 This cleans the postcode specified in
the Lookup field to tidy up the
postcode specified.

AFD_STRING_ABBREVIATE_COUNTY 6 This provides the Royal Mail
Approved county abbreviation for the
county specified in the Lookup field if
one exists.

VB Declarations for String Utility Functions:

AFD Common API
Desktop Integration Guide – February 2016

 - 20 -

Public Type AFDStringData

 Lookup As String * 255

 Outcode As String * 4

 Incode As String * 3

 Search As String * 255

 Replace As String * 255

End Type

Public Const afdStringFieldSpec =

"String@@Lookup:255@Outcode:4@Incode:3@Search:255@Replace:255"

Public Const AFD_STRING_SEARCH_REPLACE = 0

Public Const AFD_STRING_SEARCH_REPLACE_CASE = 1

Public Const AFD_STRING_CAPITALISE = 2

Public Const AFD_STRING_CLEAN_LINE = 3

Public Const AFD_STRING_CHECK_POSTCODE = 4

Public Const AFD_STRING_CLEAN_POSTCODE = 5

Public Const AFD_STRING_ABBREVIATE_COUNTY = 6

C++ Declarations for String Utility Declarations:

struct afdStringData {

 char Lookup[256];

 char Outcode[5];

 char Incode[4];

 char Search[256];

 char Replace[256];

 afdStringData(){ // constructor - zero the contents

 clear();

 }

 void clear(){

 memset(this,'\0',sizeof(*this));

 }

};

static char afdStringFieldSpec[2048] =

"String@LX@Lookup:256@Outcode:5@Incode:4@Search:256@Replace:256";

#define AFD_STRING_SEARCH_REPLACE 0

#define AFD_STRING_SEARCH_REPLACE_CASE 1

#define AFD_STRING_CAPITALISE 2

#define AFD_STRING_CLEAN_LINE 3

#define AFD_STRING_CHECK_POSTCODE 4

#define AFD_STRING_CLEAN_POSTCODE 5

#define AFD_STRING_ABBREVIATE_COUNTY 6

3.1.17. Grid Utility Declarations (UK Address Management Only)

For the Grid Utility functions an AFDGridData structure is declared, containing
the fields specified in Appendix E of this manual for Grid functions. An
afdGridFieldSpec is also declared and works in the same way as the general
field specification string documented earlier in this section. The following
operation constants are also defined which are used to specify the grid
operation you wish to perform:

Constant Value Description

AFD_GRID_CONVERT 512 Converts a GB or NI based grid reference, or
latitude and longitude value to all other grid
reference types and latitude and longitude
values. (This uses a 1m resolution (6 digit).
Using a constant of 0 rather than 512 uses 5
digit grids).

AFD_GRID_LOOKUP_LOCATION 513 Looks up a town, locality, or partial postcode
specified in the Lookup field and provides an
approximate grid reference for the location if a
match is found (returns multiple results if there
are multiple matches for this location). (This
uses a 1m resolution (6 digit). Using a
constant of 1 rather than 513 uses 5 digit
grids).

AFD_GRID_DISTANCE 514 Calculates the distance between a pair of grid

AFD Common API
Desktop Integration Guide – February 2016

 - 21 -

references or latitude and longitude values
specified. (This uses a 1m resolution (6 digit).
Using a constant of 2 rather than 514 uses 5
digit grids).

VB Declarations for Grid Utility Functions:

Public Type AFDGridData

 Lookup As String * 255

 GBGridE As String * 10

 GBGridN As String * 10

 NIGridE As String * 10

 NIGridN As String * 10

 Latitude As String * 10

 Longitude As String * 10

 TextualLatitude As String * 15

 TextualLongitude As String * 15

 Km As String * 6

 Miles As String * 6

 GBGridEFrom As String * 10

 GBGridNFrom As String * 10

 NIGridEFrom As String * 10

 NIGridNFrom As String * 10

 LatitudeFrom As String * 10

 LongitudeFrom As String * 10

 TextualLatitudeFrom As String * 15

 TextualLongitudeFrom As String * 15

End Type

Public Const afdGridFieldSpec =

"Grid@@Lookup:255@GBGridE:10@GBGridN:10@NIGridE:10@NIGridN:10@Latitude:10@Longitude:10

@TextualLatitude:15@TextualLongitude:15@Km:6@Miles:6@GBGridEFrom:10@GBGridNFrom:10@NIG

ridEFrom:10@NIGridNFrom:10@LatitudeFrom:10@LongitudeFrom:10@TextualLatitudeFrom:15@Tex

tualLongitudeFrom:15"

Public Const AFD_GRID_CONVERT = 512

Public Const AFD_GRID_LOOKUP_LOCATION = 513

Public Const AFD_GRID_DISTANCE = 514

C++ Declarations for Grid Utility Declarations:

struct afdGridData {

 char Lookup[256];

 char GBGridE[11];

 char GBGridN[11];

 char NIGridE[11];

 char NIGridN[11];

 char Latitude[11];

 char Longitude[11];

 char TextualLatitude[16];

 char TextualLongitude[16];

 char Km[7];

 char Miles[7];

 char GBGridEFrom[11];

 char GBGridNFrom[11];

 char NIGridEFrom[11];

 char NIGridNFrom[11];

 char LatitudeFrom[11];

 char LongitudeFrom[11];

 char TextualLatitudeFrom[16];

 char TextualLongitudeFrom[16];

 afdGridData(){ // constructor - zero the contents

 clear();

 }

 void clear(){

 memset(this,'\0',sizeof(*this));

 }

};

static char afdGridFieldSpec[2048] =

"Grid@@Lookup:256@GBGridE:11@GBGridN:11@NIGridE:11@NIGridN:11@Latitude:11@Longitude:11

@TextualLatitude:16@TextualLongitude:16@Km:7@Miles:7@GBGridEFrom:11@GBGridNFrom:11@NIG

ridEFrom:11@NIGridNFrom:11@LatitudeFrom:11@LongitudeFrom:11@TextualLatitudeFrom:16@Tex

tualLongitudeFrom:16";

#define AFD_GRID_CONVERT 512

#define AFD_GRID_LOOKUP_LOCATION 513

#define AFD_GRID_DISTANCE 514

AFD Common API
Desktop Integration Guide – February 2016

 - 22 -

3.1.18. Email Utility Declarations

For the Email Utility function an AFDEmailData structure is declared,
containing the fields specified in Appendix E of this manual for Email
functions. An afdEmailFieldSpec is also declared and works in the same way
as the general field specification string documented earlier in this section.
The following operation constants are also defined which are used to specify
the level of email validation that you wish to perform:

Constant Value Description

AFD_EMAIL_FULL 0 Full email validation including live domain lookup

AFD_EMAIL_FORMAT 2 Validate email addres format is correct only

AFD_EMAIL_TLD 3 Validate email format is correct and the top level
domain exists

AFD_EMAIL_LOCAL 4 Validate email format, top level domain and for well
known domains carry out additional checks of the
local portion of the address

VB Declarations for Email Utility Functions:

Public Type AFDEmailData

 Email As String * 255

End Type

Public Const afdEmailFieldSpec = "Email@@Email:255"

Public Const AFD_EMAIL_FULL = 0

Public Const AFD_EMAIL_FORMAT = 2

Public Const AFD_EMAIL_TLD = 3

Public Const AFD_EMAIL_LOCAL = 4

C++ Declarations for Email Utility Declarations:

struct afdEmailData {

 char Email[256];

 afdEmailData(){ // constructor - zero the contents

 clear();

 }

 void clear(){

 memset(this,'\0',sizeof(*this));

 }

};

static char afdEmailFieldSpec[2048] = "Email@@Email:256";

#define AFD_EMAIL_FULL = 0

#define AFD_EMAIL_FORMAT = 2

#define AFD_EMAIL_TLD = 3

#define AFD_EMAIL_LOCAL = 4

3.2. Lookup Function

The most commonly used function across our product range is the Lookup
function. By entering a single string the user can find the results matching
there lookup criteria.

With our address management products three lookup types are provided
which you specify as the operation parameter in a call to AFDData:

Operation Constant Functionality

AFD_FASTFIND_LOOKUP This method is the most flexible, enabling the
user to lookup an address simply by entering
the postcode, or by using search criteria such
as “Commercial Street, Birmingham” to quickly

AFD Common API
Desktop Integration Guide – February 2016

 - 23 -

find matching records.

AFD_POSTCODE_PROPERTY_LOOKUP This method allows the user to type in any
postcode (or zipcode) and, optionally, include
optional property information to find a match.
For example “304, B11 1AA”. When full fastfind
functionality is not required using this operation
can prevent erroneous input causing long
searches.

AFD_POSTCODE_LOOKUP The user can type in any postcode (or zipcode),
e.g. “B11 1AA” and obtain the results for that
postcode. Only full correct postcodes are
accepted. This is useful when you only want a
postcode lookup, for example if you are looking
up a list of postcodes to obtain grid references.

Similarily with Nearest, three lookup types are also provided (although they
differ slightly due to the nature of the product):

Operation Constant Functionality

AFD_FASTFIND_LOOKUP This method is the most flexible, enabling the
user to find the nearest simply by entering the
postcode, or by entering a locality or town
name, or a partial postcode.

AFD_MULTIPLE_FASTFIND_LOOKUP This is similar to AFD_FASTFIND_LOOKUP,
except that where a locality or town is given
which has multiple matches the user will be
presented with a list of locations to choose from
to then lookup to find the Nearest.

AFD_POSTCODE_LOOKUP The user can type in any postcode, e.g. “B11
1AA” and obtain the Nearest records to that
postcode. Only full correct postcodes are
accepted.

With BankFinder the only option available is AFD_FASTFIND_LOOKUP
which allows you to find a bank using a sort code, postcode or other criteria
quickly.

To carry out a lookup you will first need to declare an instance of the AFD
structure you have declared in your general declarations module or class (see
Section 4.1).

You will then need to set the Lookup parameter to the postcode or fast find
string that you wish to look up.

If you are using International data you should also set the CountryISO or
Country field to specify the country to carry out the lookup for.

If you are using Nearest you should also set the MaxRecords parameter to
indicate the maximum number of records to return and the Miles or Km
parameter to specify the maximum distance to return. Using low values for
these options speeds up the lookup.

You then call the AFDData function with the following three parameters:

AFD Common API
Desktop Integration Guide – February 2016

 - 24 -

1. The Field Specification String (as detailed in Section 4.1)
2. The operation constant you require (one of the 3 above)
3. The instance of the structure or type that you declared.

If you would prefer not to use your own list box in your application, you may
wish to add to the operation constant the AFD_LIST_BOX option. This
causes the DLL to display a list box for you returning the record that the user
selects, rather than returning all matching records to your application. This is
only suitable for desktop applications as it displays the list box on-screen.
Similarly adding AFD_SHOW_ERROR causes the DLL to display any error
message to the user itself.

Should you wish to use one of the skip options in Address Management, for
example returning the first record per sector only you can also add any of the
Skip constants listed in the declarations (see Section 4.1).

When using BankFinder you may wish to add the clearing system you wish to
restrict records to as well. Using AFD_UK_CLEARING restricts records to
those on the UK (BACS) clearing system only. Using
AFD_IRISH_CLEARING restricts records to those on the Irish (IPSO) clearing
system only. If you can only clear through the UK system it is important to
use the AFD_UK_CLEARING constant.

The AFDData function will return a negative value (less than zero) in the case
of an error. Unless you have used the AFD_SHOW_ERROR option to ask
the DLL to present any error to the user, you should display an error for the
user before aborting the lookup. The AFDErrorText function will help you
obtain a string which can be useful for displaying to the user to describe the
error.

In the case of Address Management products the PostcodeFrom field of the
structure or type will be set if a postcode was looked up which has changed
following a Royal Mail recoding. The lookup will complete using the new
postcode (found in the Postcode field), however you may wish to display a
message notifying the user of this.

If the return value from the AFDData function is AFD_SUCCESS then a
matching result has been returned and you can access the fields in the
structure or type instance supplied to obtain full details for it. Included in this
is a List property that can be used to provide a formatted item for adding to a
list box to allow the user to select the desired option if desired. The Key
property should also be stored as this allows quick retrieval of the record
should it be selected using the ListFetch method described in Section 4.4.

If you have specified the AFD_LIST_BOX option then the user will have
selected the required item and you can access the fields in the supplied
structure or type instance and the lookup is complete.

Otherwise, you will have retrieved the first record which you can add to a list
box if desired. If the return value was AFD_RECORD_BREAK then no result

AFD Common API
Desktop Integration Guide – February 2016

 - 25 -

has yet been returned but the lookup is taking some time (would not occur
with a postcode or property, postcode lookup) and so the user is being given
the chance to cancel.

To retrieve the rest of the records you should call the AFDData function as
above repeatedly with the same operation code as before, but adding the
AFD_GET_NEXT constant to it to obtain subsequent records. These can be
added to a list box as above or processed as required. You should call
AFDData in a lookup to retrieve these records allowing the user to cancel the
lookup should it take some time or they realise they have entered something
incorrectly.

Example VB code for an Address Management Lookup:

 Dim details As AFDAddressData

 Dim retVal As Long

 Static running As Boolean

 ' Prevent corruption of list box from button being clicked twice

 If running Then Exit Sub

 running = True

 ' Replace lstResult with the name of your list box for the results

 With lstResult

 ' Clear out any existing items in the list

 .Clear

 ' Reset Cancel flag

 cancelFlag = False

 ' Set the lookup

 details.Lookup = txtLookup.Text ' Change txtLookup to your lookup entry textbox

 ' Carry out the lookup (no need to alter the line below, unless you want to add a

sector skip option - see constants)

 retVal = AFDData(afdFieldSpec, AFD_FASTFIND_LOOKUP + AFD_SECTOR_SKIP, details)

 ' Abort with Message if error or user cancelled

 If retVal < 0 Then

 MsgBox AFDErrorText(retVal)

 running = False

 Exit Sub

 End If

 ' Display any changed postcode if applicable

 If Trim(details.PostcodeFrom) <> "" Then

 MsgBox "Postcode has changed from " + Trim(details.PostcodeFrom) + " to " +

Trim(details.Postcode)

 End If

 ' Now add matching records to the list box

 Do While retVal >= 0

 If retVal <> AFD_RECORD_BREAK Then

 ' Add the item to the list box with hidden key at the end

 .AddItem details.List + details.Key

 End If

 ' Give user the chance to cancel and allow list box to update

 DoEvents

 ' Check if user cancelled

 If cancelFlag Then

 MsgBox "Lookup Cancelled"

 running = False

 Exit Sub

 End If

 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_FASTFIND_LOOKUP, details)

 Loop

 ' Check results have been returned

 If .ListCount = 0 Then

AFD Common API
Desktop Integration Guide – February 2016

 - 26 -

 MsgBox "No Results Found"

 Else

 .ListIndex = 0 ' Select First item in the list

 End If

 End With

 running = False

Example C++ Code For an Address Management Lookup (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 static bool running = false;

 afdAddressData details;

 char listItem[2055];

 char msgTxt[255];

 long retVal;

 CListBox* listBox;

 MSG msg;

 // Check if we are already running to prevent crossing over items in the listbox

 if (running) return;

 running = true;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Replace m_lstResult with the name given to a variable assigned to your list box

control for the results

 listBox = &m_lstResult;

 // Clear out any existing items in the list

 listBox->ResetContent();

 // Reset Cancel flag

 cancelFlag = false;

 // Update Data so we can read the lookup variable

 UpdateData(TRUE);

 // Set the lookup

 strcpy(details.Lookup, m_txtLookup); // Change this to your lookup entry textbox

value variable

 // Carry out the lookup (no need to alter the line below, unless you want to add a

sector skip option - see constants)

 retVal = (afdData)(afdFieldSpec, AFD_FASTFIND_LOOKUP, (char*)&details);

 // Abort with Message if error or user cancelled

 if (retVal < 0) {

 AFDErrorText(retVal, msgTxt);

 MessageBox(msgTxt, "Error", 0);

 running = false;

 return;

 }

 // Display any changed postcode if applicable

 if (details.PostcodeFrom[0] != '\0') {

 strcpy(msgTxt, "Postcode has changed from ");

 strcat(msgTxt, details.PostcodeFrom);

 strcat(msgTxt, " to ");

 strcat(msgTxt, details.Postcode);

 MessageBox(msgTxt, "Changed Postcode", 0);

 }

 // Now add matching records to the list box

 while (retVal >= 0) {

 if (retVal != AFD_RECORD_BREAK) {

 // make up list item with hidden key at the end

 strncpy(listItem, details.List, sizeof(details.List));

 strncpy(listItem + sizeof(details.List), details.Key, sizeof(details.Key));

 listItem[sizeof(details.List) + sizeof(details.Key)] = '\0';

AFD Common API
Desktop Integration Guide – February 2016

 - 27 -

 // Add the item to the list box

 listBox->AddString(listItem);

 }

 // Give user the chance to cancel and allow list box to update

 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 // Check if user cancelled

 if (cancelFlag) {

 MessageBox("Search Cancelled", "Cancelled", 0);

 return;

 }

 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_FASTFIND_LOOKUP,

(char*)&details);

 }

 // Check results have been returned

 if (listBox->GetCount() == 0)

 MessageBox("No Results Found", "Error", 0);

 else {

 listBox->SetCurSel(0); // Select First item in the list

 OnSelchangeLstResult(); // Set this to your list change method to simulate

selecting the first list item

 }

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

 running = false;

3.3. Search Function

The search function allows records to be located by searching using specific
fields rather than a general lookup string. It allows any of the Fields to be
searched that are specified as being searchable for the AFD product that you
are using in Appendix A (for Address Management products) or Appendix B
(for BankFinder). All fields in your database are searchable in the case of
Nearest.

To carry out a search you will first need to declare an instance of the AFD
structure you have declared in your general declarations module or class (see
Section 4.1).

You will then need to set the fields that you wish to search on to the criteria
that you wish to use. Note that if you specify a field that is not searchable in
the product that you are using it will be ignored.

If you are using International data you should also set the CountryISO or
Country field to specify the country to carry out the lookup for.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation code (AFD_SEARCH constant)
3. The instance of the structure or type that you declared.

AFD Common API
Desktop Integration Guide – February 2016

 - 28 -

If you would prefer not to use your own list box in your application, you may
wish to add to the operation constant the AFD_LIST_BOX option. This
causes the DLL to display a list box for you returning the record that the user
selects, rather than returning all matching records to your application. This is
only suitable for desktop applications as it displays the list box on-screen.
Similarly adding AFD_SHOW_ERROR causes the DLL to display any error
message to the user itself.

Should you wish to use one of the skip options in Address Management, for
example returning the first record per sector only you can also add any of the
Skip constants listed in the declarations (see Section 4.1).

When using BankFinder you may wish to add the clearing system you wish to
restrict records to as well. Using AFD_UK_CLEARING restricts records to
those on the UK (BACS) clearing system only. Using
AFD_IRISH_CLEARING restricts records to those on the Irish (IPSO) clearing
system only. If you can only clear through the UK system it is important to
use the AFD_UK_CLEARING constant.

The AFDData function will return a negative value (less than zero) in the case
of an error. Unless you have used the AFD_SHOW_ERROR option to ask
the DLL to present any error to the user, you should display an error for the
user before aborting the lookup. The AFDErrorText function will help you
obtain a string which can be useful for displaying to the user to describe the
error.

If the return value from the AFDData function is AFD_SUCCESS then a
matching result has been returned and you can access the fields in the
structure or type instance supplied to obtain full details for it. Included in this
is a List property that can be used to provide a formatted item for adding to a
list box to allow the user to select the desired option if desired. The Key
property should also be stored as this allows quick retrieval of the record
should it be selected using the ListFetch method described in Section 4.4.

If you have used the M and T options in the field specification to return all
records at once from the API then you will have all matching records in the
array you specified so the search is complete. If you have specified the
AFD_LIST_BOX option then the user will have selected the required item and
so you can access the fields in the supplied structure or type instance and the
search is complete.

Otherwise, you will have retrieved the first record which you can add to a list
box if desired. If the return value was AFD_RECORD_BREAK then no result
has yet been returned but the search is taking some time (would not occur
with a postcode or property, postcode lookup) and so the user is being given
the chance to cancel.

To retrieve the rest of the records you should call the AFDData function as
above repeatedly with the same operation code as before, but adding the
AFD_GET_NEXT constant to it to obtain subsequent records. These can be

AFD Common API
Desktop Integration Guide – February 2016

 - 29 -

added to a list box as above or processed as required. You should call
AFDData in a lookup to retrieve these records allowing the user to cancel the
lookup should it take some time or they realise they have entered something
incorrectly.

Example VB code for an Address Management Search:

 Dim details As AFDAddressData

 Dim retVal As Long

 Static running As Boolean

 ' Prevent corruption of list box from button being clicked twice

 If running Then Exit Sub

 running = True

 ' Replace lstResult with the name of your list box for the results

 With lstResult

 ' Clear out any existing items in the list

 .Clear

 ' Reset Cancel flag

 cancelFlag = False

 ' Clear Structure

 ClearAFDAddressData details

 ' Set the fields you wish to search on (look at the other properties of the

structure)

 details.Organisation = txtSearchOrganisation.Text

 details.Property = txtSearchProperty.Text

 details.Street = txtSearchStreet.Text

 details.Locality = txtSearchLocality.Text

 details.Town = txtSearchTown.Text

 details.Postcode = txtSearchPostcode.Text

 ' Carry out the search (no need to alter the line below, unless you want to add a

sector skip option - see constants)

 retVal = AFDData(afdFieldSpec, AFD_SEARCH + AFD_SECTOR_SKIP, details)

 ' Abort with Message if error or user cancelled

 If retVal < 0 Then

 MsgBox AFDErrorText(retVal)

 running = False

 Exit Sub

 End If

 ' Now add matching records to the list box

 Do While retVal >= 0

 If retVal <> AFD_RECORD_BREAK Then

 ' Add the item to the list box with hidden key at the end

 .AddItem details.List + details.Key

 End If

 DoEvents

 If cancelFlag Then

 MsgBox "Search Cancelled"

 running = False

 Exit Sub

 End If

 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_SEARCH, details)

 Loop

 ' Check results have been returned

 If .ListCount = 0 Then

 MsgBox "No Results Found"

 Else

 .ListIndex = 0 ' Select First item in the list

 End If

 End With

 running = False

AFD Common API
Desktop Integration Guide – February 2016

 - 30 -

Example C++ Code For an Address Management Search (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 static bool running = false;

 afdAddressData details;

 char listItem[2055];

 char msgTxt[255];

 long retVal;

 CListBox* listBox;

 MSG msg;

 // Check if we are already running to prevent crossing over items in the listbox

 if (running) return;

 running = true;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Replace m_lstResult with the name given to a variable assigned to your list box

control for the results

 listBox = &m_lstResult;

 // Clear out any existing items in the list

 listBox->ResetContent();

 // Reset Cancel flag

 cancelFlag = false;

 // Update Data so we can read the search variables

 UpdateData(TRUE);

 // Set the search parameters (look at the other properties of the structure)

 strcpy(details.Organisation, m_txtSearchOrganisation);

 strcpy(details.Property, m_txtSearchProperty);

 strcpy(details.Street, m_txtSearchStreet);

 strcpy(details.Locality, m_txtSearchLocality);

 strcpy(details.Town, m_txtSearchTown);

 strcpy(details.Postcode, m_txtSearchPostcode);

 // Carry out the search (no need to alter the line below, unless you want to add a

sector skip option - see constants)

 retVal = (afdData)(afdFieldSpec, AFD_SEARCH, (char*)&details);

 // Abort with Message if error or user cancelled

 if (retVal < 0) {

 if (retVal != 99) { // User Cancelled

 AFDErrorText(retVal, msgTxt);

 MessageBox(msgTxt, "Error", 0);

 return;

 }

 running = false;

 return;

 }

 // Now add matching records to the list box

 while (retVal >= 0) {

 if (retVal != AFD_RECORD_BREAK) {

 // make up list item with hidden key at the end

 strncpy(listItem, details.List, sizeof(details.List));

 strncpy(listItem + sizeof(details.List), details.Key, sizeof(details.Key));

 listItem[sizeof(details.List) + sizeof(details.Key)] = '\0';

 // Add the item to the list box

 listBox->AddString(listItem);

 }

 // Give user the chance to cancel and allow list box to update

 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 // Check if user cancelled

AFD Common API
Desktop Integration Guide – February 2016

 - 31 -

 if (cancelFlag) {

 MessageBox("Search Cancelled", "Cancelled", 0);

 return;

 }

 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_SEARCH, (char*)&details);

 }

 // Check results have been returned

 if (listBox->GetCount() == 0)

 MessageBox("No Results Found", "Error", 0);

 else {

 listBox->SetCurSel(0); // Select First item in the list

 OnSelchangeLstResult(); // Set this to your list change method to simulate

selecting the first list item

 }

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

 running = false;

3.4. List Fetch Function

Unless you are using the DLL’s internal list box (i.e. specified the
AFD_LIST_BOX constant at the time of your lookup or search) you may well
have added each of the results from a lookup or search to a list box from
which the user will select the required result. To retrieve the record they
select you should use the Key Field which will have been returned with each
result, and which you should have stored with the list items.

To fetch the record, you will first need to declare an instance of the AFD
structure you have declared in your general declarations module or class (see
Section 4.1). You should then set the Key Field to the value returned for the
list item the user has selected.

If you are using International data you should also set the CountryISO or
Country field to specify the country to carry out the lookup for.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation code (AFD_RETRIEVE_RECORD constant)
3. The instance of the structure or type that you declared.

The AFDData function will return a negative value (less than zero) in the case
of an error. It is unlikely that an error will occur at this stage, unless your key
was in some way corrupted, but for completeness you can use the
AFDErrorText function to help you obtain a string which can be useful for
displaying to the user to describe the error.

You will now have the requested record and can use any of the fields in the
structure to display or otherwise process the record details as desired.

AFD Common API
Desktop Integration Guide – February 2016

 - 32 -

You should note that with Nearest and the Multiple Fastfind Lookup operation
if a location is returned you will obtain a Key starting “LOC:” followed by a grid
reference. This should be looked up as a new lookup to get the Nearest
results rather than retrieving a record.

Example VB code to fetch an item selected in the list for Address Management products:

 Dim details As AFDAddressData

 Dim pos As Long, retVal As Long

 ' Replace lstResult with the name of your list box for the results

 With lstResult

 ' Check a valid item is selected

 If .ListIndex = -1 Then

 MsgBox "No Item Selected"

 Exit Sub

 End If

 ' Set DLL parameters to retrieve the selected record

 details.Key = Mid(lstResult, 513) ' Replace lstResult with the name of your list box

for the results

 ' Finished with the list box

 End With

 ' Carry out the lookup (no need to alter the line below, unless you want to add a

sector skip option - see constants)

 retVal = AFDData(afdFieldSpec, AFD_RETRIEVE_RECORD, details)

 ' Abort with Message if error or user cancelled

 If retVal < 0 Then

 MsgBox AFDErrorText(retVal)

 Exit Sub

 End If

 ' Now Assign required fields to your application

 ' These are any of the members of the details. type (Use Trim to remove whitespace)

 txtName.Text = Trim(details.Name)

 txtOrganisation.Text = Trim(details.Organisation)

 txtProperty.Text = Trim(details.Property)

 txtStreet.Text = Trim(details.Street)

 txtLocality.Text = Trim(details.Locality)

 txtTown.Text = Trim(details.Town)

 txtPostcode.Text = Trim(details.Postcode)

Example C++ code to fetch an item selected in the list for Address Management products

(Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 afdAddressData details;

 bool foundSel = false;

 long retVal;

 CListBox* listBox;

 char lstStr[2055];

 char msgTxt[255];

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Replace m_lstResult with the name given to a variable assigned to your list box

control for the results

 listBox = &m_lstResult;

 // Set DLL parameters to retrieve the selected record

 listBox->GetText(listBox->GetCurSel(), lstStr);

 strncpy(details.Key, lstStr + sizeof(details.List), sizeof(details.Key));

AFD Common API
Desktop Integration Guide – February 2016

 - 33 -

 // Carry out the lookup (no need to alter the line below, unless you want to add a

sector skip option - see constants)

 retVal = (afdData)(afdFieldSpec, AFD_RETRIEVE_RECORD, (char*)&details);

 // Abort with Message if error

 if (retVal < 0) {

 AFDErrorText(retVal, msgTxt);

 MessageBox(msgTxt, "Error", 0);

 return;

 }

 // Now Assign required fields to your application

 // These are any of the members of the details. structure

 m_txtName = details.Name;

 m_txtOrganisation = details.Organisation;

 m_txtProperty = details.Property;

 m_txtStreet = details.Street;

 m_txtLocality = details.Locality;

 m_txtTown = details.Town;

 m_txtPostcode = details.Postcode;

 // Update Fields

 UpdateData(FALSE);

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

3.5. Account Number Validation – BankFinder Only

This function provides the ability to validate a sort code and account number.
This checks that the account number is valid for the branch of the bank which
the sortcode belongs to. This does not guarantee that the account number
exists or sufficient funds exist for any transaction, but greatly cuts down on
errors due to incorrectly entered numbers. The function will also translate any
non-standard account numbers (e.g. a 10-digit account number).

To carry out a validation, you will first need to declare an instance of the
AFDBankData structure you have declared in your general declarations
module or class (see Section 4.1). You should then set the SortCode and
AccountNumber Fields to the sort code and account number that you wish to
validate (or instead the IBAN if validating an account number in that
International standardised format). Optionally with Building Society credits
you may also require a Roll Number.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation code (AFD_ACCOUNT_VALIDATE constant)
3. The instance of the structure or type that you declared.

If you would prefer the DLL to display any error message that may occur to
the user, rather than having to display this yourself, you should add the
AFD_SHOW_ERROR constant to the operation parameter. This is only
suitable for desktop applications as it displays any error message on-screen.

You may also need to add the clearing system you wish to restrict records to
as well. Using AFD_UK_CLEARING restricts records to those on the UK
(BACS) clearing system only. Using AFD_IRISH_CLEARING restricts

AFD Common API
Desktop Integration Guide – February 2016

 - 34 -

records to those on the Irish (IPSO) clearing system only. If you can only
clear through the UK system it is important to use the AFD_UK_CLEARING
constant.

The AFDData function will return a negative value (less than zero) in the case
of an error. Unless you have used the AFD_SHOW_ERROR option to ask
the DLL to present any error to the user, you should display an error for the
user before aborting the lookup. The AFDErrorText function will help you
obtain a string which can be useful for displaying to the user to describe the
error.

Otherwise the account number is valid and you should use the SortCode,
AccountNumber and TypeOfAccount fields returned in the supplied type or
structure instance to process the account number (and optionally roll number
with some building societies) as they may be updated should account number
translation have been necessary.

If the return value is AFD_SUCCESS then the account number has been
validated, if the return value is AFD_SUCCESS_NO_VALIDATION then
account numbers on this sortcode cannot be validated and so the number
should still be treated as valid. This return code is provided so you can carry
out an additional check on the account number, e.g. asking a customer on the
phone to repeat it, checking it has been entered from a paper form correctly
etc. if you wish to do so.

If you are processing account numbers on both clearing systems and wish to
check which one the branch at which the account number that was entered
resides on, you can do this by checking the value of the ClearingSystem field:

Clearing System Field
Value

Meaning

United Kingdom (BACS) The branch at which this account is held is on the UK clearing
system

Ireland (IPSO) The branch at which this account is held is on the Irish Payment
Services Organisation Clearing System

Both UK and Irish The branch at which this account is held is on both the UK and
Irish clearing systems. The actual account may only clear
through one of these systems but it is not possible to determine
which one so you should clarify that with the customer.

Should you also wish to check the branch details match those that the
customer has supplied, check the transaction types allowed at this branch, or
obtain the address to use for this branch (may not be the branch physical
location) then you can carry out a lookup for the sortcode (see Section 4.1) to
obtain the branch information.

Example VB code to validate an account number:

 Dim details As AFDBankData

 Dim retVal As Long

 ' Set the Sort Code and Account Number

 details.SortCode = txtValidateSortcode.Text ' Change txtValidateSortCode to your

sortcode entry textbox

AFD Common API
Desktop Integration Guide – February 2016

 - 35 -

 details.AccountNumber = txtValidateAccountNo.Text ' Change txtValidateAccountNo to

your account number entry textbox

 ' Carry out the validation (you can change the AFD_BOTH_CLEARINGS option to

AFD_UK_CLEARING or AFD_IRISH_CLEARING as desired)

 retVal = AFDData(afdBankFieldSpec, AFD_ACCOUNT_VALIDATE + AFD_BOTH_CLEARINGS,

details)

 ' Abort with Message if error

 If retVal < 0 Then

 MsgBox AFDErrorText(retVal)

 Exit Sub

 End If

 ' Display validation result - with details to submit for payment - note non-standard

account number's will be translated

 MsgBox "Account Number Valid: " + vbCrLf + vbCrLf + "Sortcode: " +

Trim(details.SortCode) + vbCrLf + "Account Number: " + Trim(details.AccountNumber) +

vbCrLf + "Type of Account Code: " + Trim(details.TypeOfAccount) + vbCrLf + "Clearing

System: " + Trim(details.ClearingSystem)

Example C++ code to validate an account number (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 afdBankData details;

 char msgTxt[255];

 long retVal;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Update Data so we can read the sortcode and account number variables

 UpdateData(TRUE);

 // Set the Sort Code and Account Number

 strcpy(details.SortCode, m_txtValidateSortcode); // Change this to your sort code

textbox value variable

 strcpy(details.AccountNumber, m_txtValidateAccountNo); // Change this to your

account number textbox value variable

 // Carry out the validation (you can change the AFD_BOTH_CLEARINGS option to

AFD_UK_CLEARING or AFD_IRISH_CLEARING as desired)

 retVal = (afdData)(afdBankFieldSpec, AFD_ACCOUNT_VALIDATE + AFD_BOTH_CLEARINGS,

(char*)&details);

 // Abort with Message if error or user cancelled

 if (retVal < 0) {

 AFDErrorText(retVal, msgTxt);

 MessageBox(msgTxt, "Error", 0);

 return;

 }

 // Display validation result - with details to submit for payment - note non-

standard account number's will be translated

 strcpy(msgTxt, "Account Number Valid:\n\nSortcode: ");

 strcat(msgTxt, details.SortCode);

 strcat(msgTxt, "\nAccount Number: ");

 strcat(msgTxt, details.AccountNumber);

 strcat(msgTxt, "\nType of Account Code: ");

 strcat(msgTxt, details.TypeOfAccount);

 strcat(msgTxt, "\nClearing System: ");

 strcat(msgTxt, details.ClearingSystem);

 MessageBox(msgTxt, "Validation Successful", 0);

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

AFD Common API
Desktop Integration Guide – February 2016

 - 36 -

3.6. Card Number Validation – BankFinder Only

This function provides the ability to validate a card number, and optionally
check that an expiry date indicates that the card is in-date. This checks that
the card number is a valid one for the type of card and can indicate the card
type. This does not guarantee that the card exists or that a transaction will be
authorized, but greatly cuts down on errors due to incorrectly entered
numbers.

To carry out a validation, you will first need to declare an instance of the
AFDBankData structure you have declared in your general declarations
module or class (see Section 4.1). You should then set the CardNumber and,
if you wish, the ExpiryDate Fields for the card that you wish to validate.

You then call the AFDData function with the following three parameters:

1. The Field Specification String (as detailed in Section 4.1)
2. The operation code (AFD_CARD_VALIDATE constant)
3. The instance of the structure or type that you declared.

If you would prefer the DLL to display any error message that may occur to
the user, rather than having to display this yourself, you should add the
AFD_SHOW_ERROR constant to the operation parameter. This is only
suitable for desktop applications as it displays any error message on-screen.

The AFDData function will return a negative value (less than zero) in the case
of an error. Unless you have used the AFD_SHOW_ERROR option to ask
the DLL to present any error to the user, you should display an error for the
user before aborting the lookup. The AFDErrorText function will help you
obtain a string which can be useful for displaying to the user to describe the
error.

Otherwise the card number is valid. If you wish to determine the card type,
the CardType field will hold this information.

Example VB code to validate a card number:

 Dim details As AFDBankData

 Dim retVal As Long

 ' Set the Card Number and Expiry Date (Optional)

 details.CardNumber = txtValidateCardNo.Text ' Change txtValidateCardNo to your card

number entry textbox

 details.ExpiryDate = txtValidateExpiry.Text ' Change txtValidateExpiry to your

expiry date entry textbox

 ' Carry out the validation (you can change the AFD_BOTH_CLEARINGS option to

AFD_UK_CLEARING or AFD_IRISH_CLEARING as desired)

 retVal = AFDData(afdBankFieldSpec, AFD_CARD_VALIDATE, details)

 ' Abort with Message if error

 If retVal < 0 Then

 MsgBox AFDErrorText(retVal)

 Exit Sub

 End If

 ' Display validation result

 MsgBox "Card Valid: " + Trim(details.CardType)

AFD Common API
Desktop Integration Guide – February 2016

 - 37 -

Example C++ code to validate a card number (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 afdBankData details;

 char msgTxt[255];

 long retVal;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Update Data so we can read the card number and expiry date variables

 UpdateData(TRUE);

 // Set the Card Number and Expiry date (Optional)

 strcpy(details.CardNumber, m_txtValidateCardNo); // Change this to your card number

textbox value variable

 strcpy(details.ExpiryDate, m_txtValidateExpiry); // Change this to your expiry date

textbox value variable

 // Carry out the validation (no need to alter the line below)

 retVal = (afdData)(afdBankFieldSpec, AFD_CARD_VALIDATE, (char*)&details);

 // Abort with Message if error or user cancelled

 if (retVal < 0) {

 AFDErrorText(retVal, msgTxt);

 MessageBox(msgTxt, "Error", 0);

 return;

 }

 // Display validation result

 strcpy(msgTxt, "Card Valid: ");

 strcat(msgTxt, details.CardType);

 MessageBox(msgTxt, "Validation Successful", 0);

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

3.7. List Functions – Address Management Only

With Postcode Plus, Names & Numbers and TraceMaster products you can
use the list functions to obtain a list of alias localities for the postcode sector
that a postcode or result is contained in. These are non-postally required
localities held by Royal Mail which can or may be included on an address if
desired. An example of this would be including Wimbledon for an address in
London. You should note that these are stored at postal sector level (e.g.
SW19 1) and there are often multiple entries for an address so a locality being
returned does not mean it is necessarily the best one for the particular
address you are viewing.

For Names & Numbers and TraceMaster products only it is also possible to
obtain a list of possible values for most fields, e.g. all the Mailsort codes
present, business descriptions, etc. You can also specify the start value of
the field, e.g. return all surnames present starting with “Smith”.

When using International data you can also use the List functions to obtain a
list of all available countries (names or ISO codes).

To carry out a list operation, you first need to declare an instance of the
AFDListData structure you have declared in your general declarations module

AFD Common API
Desktop Integration Guide – February 2016

 - 38 -

or class (see Section 4.1). For an alias locality lookup, you should then set
the Lookup field to the postcode or record key that you wish to lookup the
alias localities for. When retrieving field lists from Names & Numbers you can
set this to specify that only entries starting with your specified string are
returned (this is essential for long lists like surname to be useful, but is
generally not so useful with shorter lists like Household Composition).

The operation parameter passed to the AFDData function determines the List
function carried out:

Constant Description

AFD_LIST_ALIAS_LOCALITY Returns all alias localities for the sector that
the specified postcode or key resides in.

The following are applicable when using International data only:

AFD_LIST_COUNTRY_ISO Will return the ISO codes of all available
countries.

AFD_LIST_COUNTRY Will return the names of all available
countries.

The following are applicable to Names & Numbers and TraceMaster Products Only:
These all return a list of all entries of the data item specified in the data
Setting the lookup parameter will restrict matches to only those items starting with the
specified string.

AFD_LIST_FORENAME Returns Forenames (first names).

AFD_LIST_SURNAME Returns Surnames

AFD_LIST_ORGANISATION Returns Organisations

AFD_LIST_PROPERTY Returns Properties

AFD_LIST_STREET Returns Streets

AFD_LIST_LOCALITY Returns Localities

AFD_LIST_TOWN Returns Postal Towns

AFD_LIST_COUNTY Returns Counties (This includes Postal,
Traditional and Administrative County names)

AFD_LIST_MAILSORT_CODE Returns Mailsort codes

AFD_LIST_URBAN_RURAL_CODE Returns Urban Rural Codes

AFD_LIST_URBAN_RURAL_NAME Returns Urban Rural Names

AFD_LIST_WARD_CODE Returns Ward Codes

AFD_LIST_WARD_NAME Returns Ward Names

AFD_LIST_CONSTITUENCY Returns Constituencies

AFD_LIST_EER_CODE Returns EER Codes (European Electoral
Region Codes)

AFD_LIST_EER_NAME Returns EER Names

AFD_LIST_AUTHORITY_CODE Returns Local / Unitary Authority Codes

AFD_LIST_AUTHORITY Returns Authority Names

AFD_LIST_LEA_CODE Returns LEA Codes (Local Education
Authority)

AFD_LIST_LEA_NAME Returns LEA Names

AFD_LIST_TV_REGION Returns TV Regions

AFD_LIST_NHS_CODE Returns NHS Codes

AFD_LIST_NHS_NAME Returns NHS Names

AFD_LIST_NHS_REGION_CODE Returns NHS Region Codes

AFD_LIST_NHS_REGION_NAME Returns NHS Region Names

AFD_LIST_PCT_CODE Return PCT Codes

AFD_LIST_PCT_NAME Return PCT Names

AFD_LIST_CENSATION_CODE Returns Censation Codes

AFD_LIST_AFFLUENCE Returns Censation Affluence Codes with
descriptions

AFD Common API
Desktop Integration Guide – February 2016

 - 39 -

AFD_LIST_LIFESTAGE Returns Censation Lifestage Codes with
descriptions

AFD_LIST_ADDITIONAL_CENSUS_INFO Returns Censation Additional Information with
descriptions.

AFD_LIST_HOUSEHOLD_COMPOSITION Returns Household composition codes with
descriptions.

AFD_LIST_BUSINESS Returns Business descriptions

AFD_LIST_SIZE Returns Company Size catagories

AFD_LIST_SIC_CODE Returns SIC Codes

AFD_LIST_COUNCIL_TAX_BAND Returns Council Tax Bands

You then call the AFDData function with the following three parameters:

1. The List Field Specification String (as detailed in Section 4.1)
2. The operation code (See above for options).
3. The instance of the structure or type that you declared.

If you would prefer not to use your own list box in your application, you may
wish to add to the operation constant the AFD_LIST_BOX option. This
causes the DLL to display a list box for you returning the record that the user
selects, rather than returning all matching list records to your application. This
is only suitable for desktop applications as it displays the list box on-screen.
Similarly adding AFD_SHOW_ERROR causes the DLL to display any error
message to the user itself.

The AFDData function will return AFD_SUCCESS for most operations or
AFD_NO_RESULTS_FOUND if there were no matching list items. Other
errors may be returned if the product is not correctly licensed (i.e.
AFD_ERROR_OPENING_FILES, AFD_ERROR_FILE_READ, or
AFD_DATA_LICENSE_ERROR). So, unless you have used the
AFD_SHOW_ERROR option to ask the DLL to present any error to the user,
you may wish to call AFDErrorText in these circumstances to obtain a string to
display to the user describing the error.

If the return value from the AFDData function is AFD_SUCCESS then a
matching result has been returned and you can access the fields in the
structure or type instance supplied to obtain full details for it. The resulting
string will be found in the List Field of the structure.

If you have specified the AFD_LIST_BOX option then the user will have
selected the required item and you can access the selected result in the List
Field of the structure.

Otherwise, you will have retrieved the first record. To retrieve the rest of the
records you should call the AFDData function as above repeatedly with the
same operation code as before, but adding the AFD_GET_NEXT constant to
it to obtain subsequent records. These can be added to a list box as above or
processed as required.

Example VB code for a List operation to retrieve alias localities:

 Dim details As AFDListData

 Dim retVal As Long

AFD Common API
Desktop Integration Guide – February 2016

 - 40 -

 Static running As Boolean

 ' Prevent corruption of list box from button being clicked twice

 If running Then Exit Sub

 running = True

 ' Replace lstResult with the name of your list box for the results

 With lstResult

 ' Clear out any existing items in the list

 .Clear

 ' Reset Cancel flag

 cancelFlag = False

 ' Set the lookup

 details.Lookup = txtLookup.Text ' Change txtLookup to the postcode or record key you

wish to lookup

 ' Carry out the lookup (Can alter the operation to retrieve N&N list items if

desired)

 retVal = AFDData(afdFieldSpec, AFD_LIST_ALIAS_LOCALITY, details)

 ' Abort with Message if error or user cancelled

 If retVal < 0 Then

 MsgBox AFDErrorText(retVal)

 running = False

 Exit Sub

 End If

 ' Now add matching records to the list box

 Do While retVal >= 0

 ' Add the item to the list box with hidden key at the end

.AddItem Trim(details.List)

' Give user the chance to cancel and allow list box to update

 DoEvents

 ' Check if user cancelled

 If cancelFlag Then

 MsgBox "Lookup Cancelled"

 running = False

 Exit Sub

 End If

 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_LIST_ALIAS_LOCALITY, details)

 Loop

 ' Check results have been returned

 If .ListCount = 0 Then

 MsgBox "No Results Found"

 Else

 .ListIndex = 0 ' Select First item in the list

 End If

 End With

 running = False

Example C++ Code For an Address Management Lookup (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 static bool running = false;

 afdListData details;

 char listItem[2055];

 char msgTxt[255];

 long retVal;

 CListBox* listBox;

 MSG msg;

 // Check if we are already running to prevent crossing over items in the listbox

 if (running) return;

 running = true;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

AFD Common API
Desktop Integration Guide – February 2016

 - 41 -

 }

 // Replace m_lstResult with the name given to a variable assigned to your list box

control for the results

 listBox = &m_lstResult;

 // Clear out any existing items in the list

 listBox->ResetContent();

 // Reset Cancel flag

 cancelFlag = false;

 // Update Data so we can read the lookup variable

 UpdateData(TRUE);

 // Set the lookup

 strcpy(details.Lookup, m_txtLookup); // Change this to the postcode or record key

you wish to lookup

 // Carry out the lookup (Can alter the operation to retrieve N&N list items if

desired)

 retVal = (afdData)(afdFieldSpec, AFD_LIST_ALIAS_LOCALITY, (char*)&details);

 // Abort with Message if error or user cancelled

 if (retVal < 0) {

 AFDErrorText(retVal, msgTxt);

 MessageBox(msgTxt, "Error", 0);

 running = false;

 return;

 }

 // Now add matching records to the list box

 while (retVal >= 0) {

// make up list item

strncpy(listItem, details.List, sizeof(details.List));

 listItem[sizeof(details.List)] = '\0';

 // Add the item to the list box

 listBox->AddString(listItem);

 // Give user the chance to cancel and allow list box to update

 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 // Check if user cancelled

 if (cancelFlag) {

 MessageBox("Search Cancelled", "Cancelled", 0);

 return;

 }

 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_LIST_ALIAS_LOCALITY,

(char*)&details);

 }

 // Check results have been returned

 if (listBox->GetCount() == 0)

 MessageBox("No Results Found", "Error", 0);

 else {

 listBox->SetCurSel(0); // Select First item in the list

 OnSelchangeLstResult(); // Set this to your list change method to simulate

selecting the first list item

 }

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

 running = false;

3.8. String Utility Functions – Depreciated and Unsupported

These are provided for compatibility with existing applications which may
depend on them but for new developments we would recommend you use in-

AFD Common API
Desktop Integration Guide – February 2016

 - 42 -

built functions which are included with most modern development
environments.

To carry out a string operation, you will first need to declare an instance of the
AFDStringData structure you have declared in your general declarations
module or class (see Section 4.1). You should then set the Lookup Field to
the string that you wish to clean. If you wish to carry out a Search and
Replace operation then you should also set the Search and Replace fields to
the appropriate strings.

The operation parameter passed to the AFDData function determines the
String operation which is carried out, and this should be one of the following:

Constant Description

AFD_ STRING_SEARCH_REPLACE All occurrences in the string specified in the
Lookup field of the string specified in the
Search field are replaced with the string in the
Replace field.

AFD_STRING_SEARCH_REPLACE_CASE This is the same as
AFD_STRING_SEARCH_REPLACE but is
case sensitive.

AFD_STRING_CAPITALISE This corrects the capitalisation of the string
specified in the Lookup field. For example
‘commercial STREET’ would become
‘Commercial Street’.

AFD_STRING_CLEAN_LINE This cleans the string specified in the Lookup
field by removing spurious characters that
should not be in an address line, e.g. a trailing
comma.

AFD_STRING_CHECK_POSTCODE This checks if the string specified in the
Lookup field looks like a postcode.

AFD_STRING_CLEAN_POSTCODE This cleans the postcode specified in the
Lookup field to tidy up the postcode specified.

AFD_STRING_ABBREVIATE_COUNTY This provides the Royal Mail Approved county
abbreviation for the county specified in the
Lookup field if one exists.

You then call the AFDData function with the following three parameters:

4. The String Field Specification String (as detailed in Section 4.1)
5. The operation code (See above for options).
6. The instance of the structure or type that you declared.

The AFDData function will return AFD_SUCCESS for most operations. If you
are using AFD_STRING_CLEAN_POSTCODE then
AFD_NO_RESULTS_FOUND will be returned if the string does not look like a
postcode. For AFD_STRING_ABBREVIATE_COUNTY the constant
AFD_NO_RESULTS_FOUND will also be returned if there is no Royal Mail
approved abbreviation available for the specified county name.

The resulting string will be found in the Lookup Field of the structure. When
using the AFD_STRING_CLEAN_POSTCODE function the Outcode and
Incode portions of the postcode (portion before and after the space) will also
be avaliable in the separate Outcode and Incode Fields.

AFD Common API
Desktop Integration Guide – February 2016

 - 43 -

Example VB code for a Search/Replace String Operation:

 Dim details As AFDStringData

 Dim retVal as Long

 ' Set the Lookup, Search and Replace parameters

 details.Lookup = txtLookup.Text ' Change txtLookup.Text to your string entry textbox

 details.Search = txtSearch.Text ' Change txtSearch.Text to your search entry textbox

 details.Replace = txtReplace.Text ' Change txtReplace.Text to your replace textbox

 ' Carry out the String operation

 retVal = AFDData(afdStringFieldSpec, AFD_STRING_SEARCH_REPLACE, details)

 ' Check if success

 If retVal >= 0 Then

 ' details.Lookup holds the updated string

 End If

Example C++ code for a Search/Replace String Operation (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 afdStringData details;

 long retVal;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Update Data so we can read the lookup, search and replace variables

 UpdateData(TRUE);

 // Set the String to lookup, and the string to Search for and Replace with

 strcpy(details.Lookup, m_txtLookup); // Change this to your string textbox value

variable

 strcpy(details.Search, m_txtSearch); // Change this to your search textbox value

variable

 strcpy(details.Replace, m_txtReplace); // Change this to your replace textbox value

variable

 // Carry out the String operation

 retVal = (afdData)(afdStringFieldSpec, AFD_STRING_SEARCH_REPLACE, (char*)&details);

 // Check if success

 if (retVal >= 0) {

 // details.Lookup holds the updated string

 }

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

3.9. Grid Utility Functions – UK Address Management Only

These functions are used to carry out operations related to grid references
and latitude and longitude values. You can convert between GB and Irish
based grid references and also convert to and from latitude and longitude
values. The facility to convert a value in kilometers to miles and vice-versa,
return an approximate grid reference for a location and also calculate the
distance between two geographical locations is also included.

To carry out a grid operation, you will first need to declare an instance of the
AFDGridData structure you have declared in your general declarations
module or class (see Section 4.1).

AFD Common API
Desktop Integration Guide – February 2016

 - 44 -

The operation parameter passed to the AFDData function determines the
String operation which is carried out, and this should be one of the following:

Constant Value Description

AFD_GRID_CONVERT 512 Converts a GB or NI based grid reference, or
latitude and longitude value to all other grid
reference types and latitude and longitude
values. You should set the location in the
Fields of your structure or type instance, for
example set the GBGridE and GBGridN fields
and the function will return the NIGridE and
NIGridN variants along with the latitude and
longitude values etc. (This uses a 1m
resolution (6 digit). Using a constant of 0
rather than 512 uses 5 digit grids).

AFD_GRID_LOOKUP_LOCATION 513 Looks up a town, locality, or partial postcode
specified in the Lookup field and provides an
approximate grid reference and latitude and
longitude values for the location if a match is
found. Can return multiple records if the
location is ambiguous. (This uses a 1m
resolution (6 digit). Using a constant of 1
rather than 513 uses 5 digit grids).

AFD_GRID_DISTANCE 514 Calculates the distance between a pair of grid
references or latitude and longitude values
specified. You will need to set a grid or
latitude and longitude value in both the normal
fields and those prefixed with “From” to find
the distance in both Miles and Km. (This uses
a 1m resolution (6 digit). Using a constant of 2
rather than 514 uses 5 digit grids).

You then call the AFDData function with the following three parameters:

1. The Grid Field Specification String (as detailed in Section 4.1)
2. The operation code (See above for options).
3. The instance of the structure or type that you declared.

The AFDData function will return AFD_SUCCESS on success. If the
operation fails, for example a location looked up does not exist or a grid
reference specified is out of range then AFD_NO_RESULTS_FOUND will be
returned.

You can then read the resulting grid reference, latitude and longitude values,
or Km and Miles values as appropriate for the operation you have carried out
and the data that you require.

Example VB code for converting a GB based grid reference:

 Dim details As AFDGridData

 Dim retVal as Long

 ' Set the GBGridE and GBGridN parameters

 details.GBGridE = "406600" ' Change 406600 to the grid easting value you wish to

convert

 details.GBGridN = "286500" ' Change 286500 to the grid northing value you wish to

convert

 ' Carry out the Grid operation

AFD Common API
Desktop Integration Guide – February 2016

 - 45 -

 retVal = AFDData(afdGridFieldSpec, AFD_GRID_CONVERT, details)

 ' Check if success

 If retVal >= 0 Then

 ' Other elements of details hold converted values, e.g. Latitude and Longitude

 End If

Example C++ code for converting a GB based grid reference (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 afdGridData details;

 long retVal;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Set the GBGridE and GBGridN parameters

 strcpy(details.GBGridE, "406600"); // Change 406600 to the grid easting value you

wish to convert

 strcpy(details.GBGridN, "286500"); // Change 286500 to the grid northing value you

wish to convert

 // Carry out the Grid operation

 retVal = (afdData)(afdGridFieldSpec, AFD_GRID_CONVERT, (char*)&details);

 // Check if success

 if (retVal >= 0) {

 // Other elements of details hold converted values, e.g. Latitude and Longitude

 }

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

3.10. Email Utility Function

This function is used to carry out validation of an email address. This verifies
that the address is in the correct format for an email address and also that the
domain exists to help minimise errors in data entry.

To carry out an email operation, you will first need to declare an instance of
the AFDEmailData structure you have declared in your general declarations
module or class (see Section 4.1).

The operation parameter passed to the AFDData function determines the
level of validation which is carried out, and this should be one of the following:

Constant Value Description

AFD_EMAIL_FULL 0 Full email validation including live domain
lookup

AFD_EMAIL_FORMAT 2 Validate email addres format is correct only

AFD_EMAIL_TLD 3 Validate email format is correct and the top
level domain exists

AFD_EMAIL_LOCAL 4 Validate email format, top level domain and
for well known domains carry out additional
checks of the local portion of the address

You then call the AFDData function with the following three parameters:

4. The Email Field Specification String (as detailed in Section 4.1)
5. The operation code (See above for options).

AFD Common API
Desktop Integration Guide – February 2016

 - 46 -

6. The instance of the structure or type that you declared.

The AFDData function will return AFD_SUCCESS on success. If the
operation fails, for example the email address format is not valid then
AFD_NO_RESULTS_FOUND will be returned.

Example VB code for validating an email address:

 Dim details As AFDEmailData

 Dim retVal as Long

 ' Set the Email parameter

 details.Email = "support@afd.co.uk" ' Change support@afd.co.uk to the email address

you wish to validate

 ' Carry out the Email operation

 retVal = AFDData(afdEmailFieldSpec, AFD_EMAIL_FULL, details)

 ' Check if success

 If retVal >= 0 Then

 ' Email address is valid

 End If

Example C++ code for validating an email address (Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 afdEmailData details;

 long retVal;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Set the GBGridE and GBGridN parameters

 strcpy(details.Email, "support@afd.co.uk"); // Change support@afd.co.uk to the email

address you wish to validate

 // Carry out the Email operation

 retVal = (afdData)(afdEmailFieldSpec, AFD_GRID_CONVERT, (char*)&details);

 // Check if success

 if (retVal >= 0) {

 // Email Address is Valid

 }

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

3.11. Clean Function – UK Address Management Only

Requires a Refiner API License

The clean function allows an address, for example from a database, to be
cleaned, i.e. where possible matched to Postcode Plus and therefore given a
correct deliverable address.

To clean an address will first need to declare an instance of the AFD structure
you have declared in your general declarations module or class

You will then need to set address fields in your structure to specifiy the
address to be cleaned. These do not need to match up to the actual fields, for
example if you have Address Line 1, Address Line 2, Address Line 3 and

AFD Common API
Desktop Integration Guide – February 2016

 - 47 -

Postcode in your database you could set these to Property, Street, Locality
and Postcode fields in the structure and they will be cleaned and returned in
the correct named fields when matched. Note that if you set any non-address
fields they will be ignored (Please see Appendix G for the list of fields that
Refiner will use).

You then call the AFDData function with the following three parameters:

4. The Field Specification String (as detailed in Section 4.1)
5. The operation code (AFD_CLEAN constant)
6. The instance of the structure or type that you declared.

The AFDData function will return a negative value (less than zero) in the case
where an address cannot be fully matched. This could be because the
address was unmatchable, International, or an ambiguous result was found
(see Section 4.1.9 for details of these return codes). An address will still be
returned as this will include the address with Field Placement correction which
you can use if you desire.

Where the function returns a positive value (greater than zero) this means that
the address has been uniquely matched. You may still like to examine the
return value as this will give details as to the level to which the address was
matched (see Section 4.1.9 for details of these return codes). Many other
fields are also avaliable with additional (non-address data) which you may
require.

In the case of an ambiguous or suggested result (return code is -102, -103, or
-104) the first address returned from the function will be the original address
with field placement. For non-batch processes you may wish to present a list
of addresses for the user to choose from and in this case you can continue to
call the AFDData function as above repeatedly with the same operation code
as before, but adding the AFD_GET_NEXT constant to it to obtain
subsequent records. These can be added to a list box as above or processed
as required. You should call AFDData in a lookup to retrieve these records
allowing the user to cancel the lookup should it take some time or they realise
they have entered something incorrectly.

Example VB code to clean an Address:

 Dim details As AFDAddressData

 Dim retVal as Long

 ' Replace lstResult with the name of your list box if you wish to display ambiguous

results

 With lstResult

 ' Clear out any existing items in the list

 .Clear

 ' Clear Structure

 ClearAFDAddressData details

 ' Set the fields to specify the address that you wish to clean

 details.Organisation = txtSearchOrganisation.Text

 details.Property = txtSearchProperty.Text

 details.Street = txtSearchStreet.Text

 details.Locality = txtSearchLocality.Text

AFD Common API
Desktop Integration Guide – February 2016

 - 48 -

 details.Town = txtSearchTown.Text

 details.Postcode = txtSearchPostcode.Text

 ' Clean the Address

 retVal = AFDData(afdFieldSpec, AFD_CLEAN, details)

 ' Show the resulting address

 ' These are any of the members of the details. type (Use Trim to remove whitespace)

 txtName.Text = Trim(details.Name)

 txtOrganisation.Text = Trim(details.Organisation)

 txtProperty.Text = Trim(details.Property)

 txtStreet.Text = Trim(details.Street)

 txtLocality.Text = Trim(details.Locality)

 txtTown.Text = Trim(details.Town)

 txtPostcode.Text = Trim(details.Postcode)

 ' Show Cleaning Status

 Msgbox AFDRefinerCleaningText(retVal)

 ' If ambiguous then add matching records to the list box for user selection

 ' - This is optional and not normally useful for batch processes

 If retVal = AFD_REFINER_AMBIGUOUS_POSTCODE Or retVal = AFD_REFINER_AMBIGUOUS_MATCH

Or retVal = AFD_REFINER_SUGGEST_RECORD Then

 Do While retVal <> AFD_ERROR_END_OF_SEARCH

 ' Add the item to the list box with hidden key at the end

 .AddItem details.List + details.Key

 retVal = AFDData(afdFieldSpec, AFD_GET_NEXT + AFD_CLEAN, details)

 Loop

 End If

 End With

Example C++ Code to clean an address (Visual C++)

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 afdAddressData details;

 char listItem[2055];

 char msgTxt[255];

 long retVal;

 CListBox* listBox;

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Replace lstResult with the name of your list box if you wish to display ambiguous

results

 listBox = &m_lstResult;

 // Clear out any existing items in the list

 listBox->ResetContent();

 // Update Data so we can read the search variables

 UpdateData(TRUE);

 // Set the fields to specify the address that you wish to clean

 strcpy(details.Organisation, m_txtSearchOrganisation);

 strcpy(details.Property, m_txtSearchProperty);

 strcpy(details.Street, m_txtSearchStreet);

 strcpy(details.Locality, m_txtSearchLocality);

 strcpy(details.Town, m_txtSearchTown);

 strcpy(details.Postcode, m_txtSearchPostcode);

 // Clean the Address

 retVal = (afdData)(afdFieldSpec, AFD_CLEAN, (char*)&details);

 // Show the resulting address

 // These are any of the members of the details. structure

 m_txtName = details.Name;

 m_txtOrganisation = details.Organisation;

 m_txtProperty = details.Property;

 m_txtStreet = details.Street;

AFD Common API
Desktop Integration Guide – February 2016

 - 49 -

 m_txtLocality = details.Locality;

 m_txtTown = details.Town;

 m_txtPostcode = details.Postcode;

 // Update Fields

 UpdateData(FALSE);

 // Show Cleaning Status

 AFDRefinerCleaningText(retVal, msgTxt);

 MessageBox(msgTxt, "Cleaning Status", 0);

 // If ambigious then add matching records to the list box for user selection

 // - This is optional and not normally useful for batch processes

 if ((retVal == AFD_REFINER_AMBIGUOUS_POSTCODE) || (retVal ==

AFD_REFINER_AMBIGUOUS_MATCH) || (retVal == AFD_REFINER_SUGGEST_RECORD)) {

 while (retVal != AFD_ERROR_END_OF_SEARCH) {

 // make up list item with hidden key at the end

 strncpy(listItem, details.List, sizeof(details.List));

 strncpy(listItem + sizeof(details.List), details.Key, sizeof(details.Key));

 listItem[sizeof(details.List) + sizeof(details.Key)] = '\0';

 // Add the item to the list box

 listBox->AddString(listItem);

 retVal = (afdData)(afdFieldSpec, AFD_GET_NEXT + AFD_CLEAN, (char*)&details);

 }

 }

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

AFD Common API
Desktop Integration Guide – February 2016

 - 50 -

4. Other Features

4.1. Selecting TraceMaster Datasets

AFD Names & Numbers TraceMaster includes historic datasets for Address
Management Data going back to 1998. These provide previous year’s
electoral rolls and business data. Lookup and Search operations function as
described in sections 4.2 and 4.3 of this documentation function with
TraceMaster in the same way as with all other products.

By default these operations will operate using the Current (latest) dataset.
However to use a historic dataset simply specify the dataset name (year) in
the DataSet Field of the AFDData structure. The product will automatically
carry out your Lookup or Search operation using the specified dataset.

To retrieve records from all datasets, you can call the AFDData function in a
loop specifying each dataset in turn.

4.2. Determining the Product in Use

When integrating with Address Management products the same code will
work with any of our Address Management products (AFD Postcode, AFD
Postcode Plotter, AFD Postcode Plus, AFD Names & Numbers and AFD
Names & Numbers TraceMaster).

It is not normally necessary to determine which product has been used as you
can integrate with one, e.g. Names & Numbers and the user can use any of
our address management products – they will just have less data returned
depending on the product they have. However, if for any reason, such as
disabling/enabling features of your product - you can use the Product field if
you wish to determine which product the user has and that has been used by
the Common API.

Note that in the case of multiple address management products being
installed the AFD Common API will use the highest level product available.
For example, AFD Names & Numbers would be used in preference to AFD
Postcode.

The Product field will contain one of the following values depending on the
product being used:

 AFD Postcode

 AFD Postcode Plotter

 AFD Postcode Plus

 AFD Names & Numbers

 AFD Names & Numbers TraceMaster

Note that when carrying out a BankFinder operation AFD BankFinder will
always be the product name returned.

AFD Common API
Desktop Integration Guide – February 2016

 - 51 -

4.3. Using Welsh Data in Postcode Plus

Welsh data is available for Postcode Plus on request. It works alongside the
existing English language PAF data and provides Welsh language equivalents
for streets, localities and towns in Wales were such equivalents are available.

To obtain address details using the Welsh variant simply set the DataSet
property of the address structure to “Welsh” prior to making your call to the
API. Any operation including lookup’s, searches and retrieving records can be
done using either dataset. Note that the data returned when using either
dataset will be the same if no Welsh language alternative is available.

You can also retrieve the same record in both Welsh and English simply by
calling the API to retrieve the record once with the DataSet property set to an
empty string (or English if you prefer) and once set to “Welsh”. For example,
if you carry out a lookup for a postcode, as specified in Section 4.2 of this
documentation, and add the items to a list box, when the user selects an item
from the list you can retrieve the same address in both Welsh and English
language variants by using the List Fetch operation described in Section 4.4
twice for the same record, once with the DataSet parameter set to Welsh and
once with it not set.

Example VB code to fetch an item selected in the list in both English and Welsh:

 Dim details As AFDAddressData

 Dim welshDetails As AFDAddressData

 Dim pos As Long, retVal As Long

 ' Replace lstResult with the name of your list box for the results

 With lstResult

 ' Check a valid item is selected

 If .ListIndex = -1 Then

 MsgBox "No Item Selected"

 Exit Sub

 End If

 ' Set DLL parameters to retrieve the selected record

 details.Key = Mid(lstResult, 513) ' Replace lstResult with the name of your list box

for the results

 ' We will want the same record in Welsh too

 welshDetails.Key = details.Key

 ' Finished with the list box

 End With

 ' Set DataSet to Welsh for welshDetails

 details.DataSet = ""

 welshDetails.DataSet = "Welsh"

 ' Carry out the lookup for English language data and then Welsh language data

 retVal = AFDData(afdFieldSpec, AFD_RETRIEVE_RECORD, details)

 retVal = AFDData(afdFieldSpec, AFD_RETRIEVE_RECORD, welshDetails)

 ' Abort with Message if error

 If retVal < 0 Then

 MsgBox AFDErrorText(retVal)

 Exit Sub

 End If

AFD Common API
Desktop Integration Guide – February 2016

 - 52 -

 ' Now Assign required fields to your application

 ' These are any of the members of the details. type (Use Trim to remove whitespace)

 txtEnglishName.Text = Trim(details.PostalCounty)

 txtEnglishOrganisation.Text = Trim(details.AbbreviatedPostalCounty)

 txtEnglishProperty.Text = Trim(details.OptionalCounty)

 txtEnglishStreet.Text = Trim(details.AbbreviatedOptionalCounty)

 txtEnglishLocality.Text = Trim(details.TraditionalCounty)

 txtEnglishTown.Text = Trim(details.AdministrativeCounty)

 txtEnglishPostcode.Text = Trim(details.Postcode)

 txtWelshName.Text = Trim(welshDetails.PostalCounty)

 txtWelshOrganisation.Text = Trim(welshDetails.AbbreviatedPostalCounty)

 txtWelshProperty.Text = Trim(welshDetails.OptionalCounty)

 txtWelshStreet.Text = Trim(welshDetails.AbbreviatedOptionalCounty)

 txtWelshLocality.Text = Trim(welshDetails.TraditionalCounty)

 txtWelshTown.Text = Trim(welshDetails.AdministrativeCounty)

 txtWelshPostcode.Text = Trim(welshDetails.Postcode)

Example C++ code to fetch an item selected in the list for Address Management products

(Visual C++):

 HINSTANCE afdDLL = (HINSTANCE)NULL;

 AFDDATA afdData = (AFDDATA)NULL;

 afdAddressData details;

 afdAddressData welshDetails;

 bool foundSel = false;

 long retVal;

 CListBox* listBox;

 char lstStr[2055];

 char msgTxt[255];

 // Load DLL

 if (!afdInitDLL(&afdDLL, &afdData)) {

 MessageBox("Error Loading afddata.dll", "Error", 0);

 return;

 }

 // Replace m_lstResult with the name given to a variable assigned to your list box

control for the results

 listBox = &m_lstResult;

 // Set DLL parameters to retrieve the selected record

 listBox->GetText(listBox->GetCurSel(), lstStr);

 strncpy(details.Key, lstStr + sizeof(details.List), sizeof(details.Key));

 // We will want the same record in Welsh too

 strncpy(welshDetails.Key, details.Key, sizeof(details.Key));

 ' Set DataSet to Welsh for welshDetails

 strcpy(details.DataSet, "");

 strcpy(welshDetails.DataSet, "Welsh");

 // Carry out the lookup for English language data and then Welsh language data

 retVal = (afdData)(afdFieldSpec, AFD_RETRIEVE_RECORD, (char*)&details);

 retVal = (afdData)(afdFieldSpec, AFD_RETRIEVE_RECORD, (char*)&welshDetails);

 // Abort with Message if error

 if (retVal < 0) {

 AFDErrorText(retVal, msgTxt);

 MessageBox(msgTxt, "Error", 0);

 return;

 }

 // Now Assign required fields to your application

 // These are any of the members of the details. structure

 m_txtEnglishName = details.Name;

 m_txtEnglishOrganisation = details.Organisation;

 m_txtEnglishProperty = details.Property;

 m_txtEnglishStreet = details.Street;

 m_txtEnglishLocality = details.Locality;

 m_txtEnglishTown = details.Town;

 m_txtEnglishPostcode = details.Postcode;

 m_txtWelshName = welshDetails.Name;

AFD Common API
Desktop Integration Guide – February 2016

 - 53 -

 m_txtWelshOrganisation = welshDetails.Organisation;

 m_txtWelshProperty = welshDetails.Property;

 m_txtWelshStreet = welshDetails.Street;

 m_txtWelshLocality = welshDetails.Locality;

 m_txtWelshTown = welshDetails.Town;

 m_txtWelshPostcode = welshDetails.Postcode;

 // Update Fields

 UpdateData(FALSE);

 // free DLL instance

 FreeLibrary(afdDLL);

 afdDLL = (HINSTANCE)NULL;

4.4. DX Member Data

DX Members can have access to DX data from within Postcode Plus and the
Common API. This enables you to lookup and search for DX addresses just
as you can do with Royal Mail postal addresses. Uniquely, the Common API
also allows you to easily identify DX addresses associated with a PAF
address to route your mail through a DX member's box wherever possible
resulting in savings over Royal Mail.

If you run the Wizard to generate a code sample with DX data installed
declarations will be included for the DXNumber (10 characters), DXExchange
(30 characters) and DXProfession (30 Characters). You can also manually
add these to your field specification string and structure. Postcode
Everywhere users will automatically have these fields returned in the XML if
they have the DX data installed.

Fast-find functionality works with DX data as well as postal data. For
example, as well as looking up a postcode you can also carry out a fast-find
for a DX number and searching for an organisaiton name with fast-find will
search both postal and DX data. This allows you to easily combine your
lookup’s. When searching you can either search the standard postal fields or
specify the DX Number, organisation, exchange or profession to search
theDX data instead. (If you only want to specify one set of search fields in
your application then placing DX followed by the DX number in the normal
street field will work too – town can then be used to specify the exchange if
desired).

When results are returned following any lookup or search if the address is
also a DX Member the DXNumber, DXExchange and DXProfession fields will
also be returned to indicate this. You can format a DX address as follows for
printing:

<Organisation> e.g. Pannone LLP
DX <DXNumber> DX 14314
<DXExchange> MANCHESTER

See Appendix K for a current list of available DX Professions and Exchanges.

AFD Common API
Desktop Integration Guide – February 2016

 - 54 -

5. Appendices

Appendix A. Address Management Product Fields

This currently includes Postcode, Plotter, Postcode Plus, Names & Numbers
(including TraceMaster), and ZipAddress.

 Field returned by this product and fully searchable
 Field returned by this product, but not searchable.

Note: The API Wizard will add one to the default size for development
environments that normally use null terminated strings, e.g. C++ and C# to
accommodate the null terminator.

Also note that the alternative address formats provided do share some of the
same fields where there data is identical, but you should not mix and match
other fields between the different formats as this could lead to address
corruption. For example with Standard Address Fields the Street or Locality
field could include a street number, whereas with Raw PAF Fields the number
would be in the separate Number field.

Field Name

Default
Size

Description

P
o

s
tc

o
d

e

 P
lo

tt
e
r

P
o

s
tc

o
d

e
 P

lu
s

N
a
m

e
s
 &

 N
u

m
b

e
rs

Z
ip

A
d

d
re

s
s

General Fields

Lookup 255 Specify postcode (or zipcode) and fast-
find lookup string’s here for lookup
operations.

    

Key 255 Provides a key which can be used to
easily retrieve the record again, e.g.
when a user clicks on an item in the list
box.

    

List 512 Provides a list item formatted to be
added to a list box for this record.

    

Product 40 Indicates the product name used [10]     

Occupant Fields

Name 120 Full name (includes title, first name,
middle initial and surname).

 

Gender 6 The gender (M or F) of the resident if
known.

 

Forename 30 The first name of the resident 

MiddleInitial 6 The middle initiate of the resident. 

Surname 30 The surname/last name of the resident. 

OnEditedRoll 6 Indicates if the resident is on the edited
electoral roll (i.e. they have not opted
out). Set to Y if the are on the Edited
Roll, N if not, blank for Organisation and

 

AFD Common API
Desktop Integration Guide – February 2016

 - 55 -

other records). To search set to #Y to
return only records on the electoral roll,
#N only for those not on the electoral
roll or !N for all records including
Organisations but excluding those not
on the Edited Roll.

DateOfBirth 10 The residents date of birth if known
(electoral roll attainers in the last 10
years only).

 

Residency 6 Gives time in years that the occupant
has lived at this address.

 

HouseholdComposition 106 Describes the household composition of
the selected address [6]

 

Standard Address Fields (Formatted as an address would appear on an envelope)

Organisation 120 Full business name (includes any
department)

   

Property 120 Property (building-includes any sub-
building).

   

Street 120 Delivery Street (includes any sub-street)     

Locality 70 Locality (sometimes a village name – in
ZipAddress used for Urbanization)

    

Town 30 Postal Delivery Town (or City)     

Postcode 10 The Royal Mail Postcode for this
address (or ZipCode)

    

Raw PAF Fields (Formatted closer to how they appear on Raw PAF, useful if your database
stores fields this way)

OrganisationName 60 Business Name   

Department 60 Department Name  

Sub Building 60 Sub Building Name  

Building 60 Building Name   

Number 10 House Number   

DependentThoroughfare 60 Sub-Street Name    

Thoroughfare 60 Street Name     

DoubleDependentLocalit
y

35 Sub-Locality Name    

DependentLocality 35 Locality Name (Urbanization in
ZipAddress)

    

Town 30 Postal Delivery Town (City)     

Postcode 10 The Royal Mail Postcode for this
address (or Zipcode)

    

BS7666 Fields (Fields to help provide addresses which conform to BS 7666-5:2006)

Identifier 8 Provides a unique identifier for the
address (the Royal Mail UDPRN)

  

BuildDate 10 Provides the build date, which can be
used as the start date, entry date, and
update date fields for BS7666.

   

Administrator 20 Provides the administrator of the
gazetteer (AFD).

   

Language 5 Provides the language (ENG)   

Department 60 The name of a department within an
organization where required.

  

Organization 60 The Organization Name   

SubUnit 60 Sub-Unit of a building where needed  

BuildingName 60 Building Name where present   

BuildingNumber 10 Building Number, including 17A, 17-19,
etc.

   

AFD Common API
Desktop Integration Guide – February 2016

 - 56 -

SubStreet 60 Sub-Street where needed  

DeliveryStreet 60 Designated Street Name     

SubLocality 60 Sub-Locality where required    

DeliveryLocality 60 Locality name (or Urbanization)     

DeliveryTown 30 Postal Town name (or City)     

Code 10 The Postcode (or ZipCode)     

County Fields (Counties are Optional for addressing and AFD provide different types of county to
meet your needs – all supply State Abbreviation in ZipAddress)

Postal County 30 Royal Mail supplied postal county     

AbbreviatedPostalCount
y

30 Royal Mail approved abbreviation is
used where available for the postal
county

    

OptionalCounty 30 Postal counties including optional ones
for most addresses which would
otherwise not have a county name.

    

AbbreviatedOptionalCou
nty

30 Royal Mail approved abbreviation
is used where available for the
optional county

    

TraditionalCounty 30 The traditional county name for
this postcode

    

AdministrativeCounty 30 The administrative county name for this
postcode

    

Alternative Postcode Fields (Can be used in-place of the Postcode field to provide it as separate
parts)

Outcode 4 The Outcode portion of the Postcode
(the portion before the space)

   

Incode 3 The Incode portion of the Postcode (the
portion after the space).

   

Additional Postal Data Fields

DPS 2 The Delivery Point Suffix which along
with the postcode uniquely identifies the
letterbox.

  

PostcodeFrom 8 Used with Postcode field to provide a
range for searching. Also returns any
changed postcode from a lookup.

   

PostcodeType 6 L for Large User Postcode, S for Small
User.

   

MailsortCode 5 Used for obtaining bulk mail discounts.    

UDPRN 8 Royal Mail Unique Delivery Point
Reference Number assigned to this
letter box.

  

JustBuilt 10 AFDJustBuilt - Contains the date of
inclusion on PAF for properties thought
to be recently built. The date is stored
numerically in descending format in the
form YYYYMMDD. YYYY is the year,
MM is the month and DD is the day. For
example 20080304 is 04/03/2008.

  

USA Format Address Fields

Recipient 120 The Recipient name were held (usually
Organisation).

   

Secondary 120 Secondary address details (usually a
building name or apartment)

   

Primary 120 Primary address details (usually a street     

AFD Common API
Desktop Integration Guide – February 2016

 - 57 -

number and name)

Urbanization 60 Urbanization (applies only to Puerto
Rico – returns Locality for UK
addresses)

    

City 30 Official City name for the address
(Town for UK addresses)

    

State 30 State Abbreviation (e.g. WA, returns
Postal County for UK addresses)

    

ZipCode 20 Full Zip+4 Code for this address
(Postcode for UK addresses)

    

International Address Fields

Country 30 Specifies the name of the country to
search for when using International data
and returns the name of the country that
the result returned was for.

    

CountryISO 3 Specifies the ISO code of the country to
search for when using International data
and returns the code for the country the
result returned was for.

    

Address1…7 120 These fields provide a formatted
address ready to print on an address
label and so eliminate the need to
format the address afterwards (as the
rules differ from country to country).

    

Principality 60 This is the principality for the address if
applicable.

   

Region 60 This is the region for the address if
applicable.

   

Cedex 60 This specifies the Cedex if applicable to
the address.

   

Phone Number Related Fields

Phone 20 STD Code or Phone Number 

[3]


[3]


[3]


Geographical Fields

GridE 10 Grid Easting as a 6 digit reference   

GridN 10 Grid Northing as a 6/7 digit reference   

Latitude 10 Latitude representation of Grid
Reference in Decimal Format (WGS84)

   

GBGridE 10 UK Based Grid Easting as a 6 digit
reference. Always returns the UK
based grid even for Northern Ireland
addresses.

   

GBGridN 10 UK Based Grid Northing as a 6/7 digit
reference.

   

NIGridE 10 Irish Grid Based Grid Easting as a 6
digit reference. Always returns the Irish
base grid even for mainland UK
addresses.

   

NIGridN 10 Irish Grid Based Grid Northing as a 6/7
digit reference.

   

Longitude 10 Longitude representation of Grid
Reference in Decimal Format (WGS84)

   

Miles 6 Distance from supplied grid reference  

Km 6 Distance from supplied grid reference  

UrbanRuralCode 2 Provides a code which indicates if an
area is mainly urban or rural and how

  

AFD Common API
Desktop Integration Guide – February 2016

 - 58 -

sparsely populated those area’s are.
[11]

UrbanRuralName 60 Provides a description which goes
along with the UrbanRuralCode.

  

SOALower 9 Lower level Super Output Area (Data
Zone in Scotland, Super Output Area in
Northern Ireland)

  

SOAMiddle 9 Middle level Super Output Area
(Intermediate Geography in Scotland,
not applicable for Northern Ireland).

  

SubCountryName 20 Provides the devolved or non-UK
country name (e.g. England, Scotland,
Wales etc.)

  

Administrative / Electoral Division Fields

WardCode 9 Code identifying the electoral ward for
this postcode

  

WardName 50 Name identifying the electoral ward for
this postcode

  

AuthorityCode 9 Local/Unitary Authority for this
Postcode (same as the start of the ward
code).

  

Authority 50 Local / Unitary Authority for this
postcode

  

ConstituencyCode 9 Parliamentary Constituency Code for
this postcode

  

Constituency 50 Parliamentary Constituency for this
postcode

  

DevolvedConstituencyC
ode

9 Devolved Constituency Code for this
postcode (currently covers Scotland)

  

DevolvedConstituencyN
ame

50 Devolved Constituency Name for this
postcode (currently covers Scotland)

  

EERCode 9 Code identifying the European Electoral
Region for this postcode

  

EERName 40 Name identifying the European
Electoral Region for this postcode

  

LEACode 3 Code identifying the Local Education
Authority for this postcode

  

LEAName 50 Name identifying the Local Education
Authority for this postcode

  

TVRegion 30 ISBA TV Region (not TV Company)  

Postcode Level Property Indicator Fields

Occupancy 6 Indication of the type of occupants of
properties found on the selected

postcode [4]

   

OccupancyDescription 30 Description matching the Occupancy

[4]
   

AddressType 6 Indication of the type of property level
data to capture to have the full address
for a property on the selected

postcode. [5]

   

AddressTypeDescription 55 Description matching the Address Type

[5]
   

NHS Fields

NHSCode 6 National Health Service Area Code  

NHSName 50 National Health Service Area Name  

AFD Common API
Desktop Integration Guide – February 2016

 - 59 -

PCTCode 9 National Heath Service Clinical
Commisioning Group Code for England
(Local Health Board Code in Wales,
Community Health Partnership in
Scotland, Local Commissioning Group
in Northern Ireland, Primary Healthcare
Directorate in the Isle of Man)

  

PCTName 50 Name matching the PCT Code field  

Censation Data Fields (See Main product Manual for full details of Censation Codes and there
meaning).

CensationCode 10 Censation Code assigned to this
Postcode

   

CensationLabel 50 Provides a handle for the Censation
Code

   

Affluence 30 Affluence description    

Lifestage 100 LifeStage description    

AdditionalCensusInfo 200 Additional information from the Census.    

Additional Organisation Information Fields

Business 100 Provides a description of the type of
business

 

SICCode 10 Standard Industry Classification Code
for an organisation record.

 

Size 6 Gives an indication of the number of
employees of an organisation at this

particular office. [7]

 

LocationType 6 The type of Business Location, e.g.
Head Office or Branch Office

 

BranchCount 6 The number of branches for this
business

 

GroupID 6 An ID of the Group were a business is
part of a wider group

 

ModelledTurnover 15 The modelled annual turnover for the
business

 

NationalSize 6 Gives an indication of the number of
employees of an organisation covering

all sites. [7]

 

Alias Localities (Non-postally required Localities)

AliasLocalities 4 Returns the number of alias records
present for the postcode sector in which
this result resides.

  

AliasLocality 35 Returns an alias (non-postal) locality
that resides in the postcode sector that
this address is contained in. Note that
many postcode sectors have multiple
alias localities and as such you can
include this field multiple times to return
multiple localities.

  

USA Specific Fields

RecordType 30 Returns a description for the type of
address record returned. [12]

 

CarrierRouteID 4 Required for bulk mailings 

LACSStatus 2 Indicates if the address is available on
the LACSLink system for obtaining new
addresses.

 

FinanceNumber 7 The USPS Finance Number for this 

AFD Common API
Desktop Integration Guide – February 2016

 - 60 -

location

CongressionalDistrict 3 The congressional district of this
address

CountyNumber 4 The USPS assigned number for this
county

 

CountyName 26 The name of the county for this address 

CityAbbreviation 14 Provides a postally acceptable
abbreviation for long city names.

 

Advanced / Premium Fields

DataSet 10 With Postcode Plus and Welsh data can
be set to ‘Welsh” to obtain the Welsh
language version of an address in
Wales where available. If not set then
the English language version will be
returned.

With TraceMaster this indicates an

historic dataset to use [9]

 

CouncilTaxBand 6 Provides the Council Tax Band for the
selected property.
Requires Names & Numbers

 

Notes:

[3] STD Code Only – No Phone Number present

[4] Possible Occupancy values and descriptions are as follows (information in brackets
not part of the description):

1. Large User Organisation (Single Organisation on this postcode)
2. Small User Organisation (All the properties on this postcode are likely to be

businesses)
3. Mostly Organisations (Most of the properties on this postcode are organisations)
4. Mixed (This postcode contains a mixture of business and residential addresses)
5. Mostly Residential (Most of the properties on this postcode are residential)
6. Residential (All the properties on this postcode are likely to be residential)

[5] Possible Address Type values and descriptions are as follows (information in
brackets not part of the description):

1. Numbered (Only a property number needs to be captured)
2. Numbered and Named (This postcode contains a mixture of properties needing a

property number and those needing a property name including properties such as
16b)

3. Numbered and Named, Likelihood of Multiple Occupancy (This postcode contains a
mixture of properties needing a property number and those needing a property
name. Some of the properties on this postcode are likely to contain multiple
occupants, e.g. flats).

4. Named (This postcode only contains properties needing a property name).
5. Non-Standard Address Format (This refers to addresses which do not have a street

field at all, or have multiple street names on the same postcode. This also includes
addresses with numbered localities (no street but a house number which goes in with
the locality field). It is in-effect a warning to be careful in capturing the property
information as it is not in one of the most common address formats).

6. PO Box (This postcode has a PO Box number)
7. No Property Information (Addresses on this postcode have no property information -

i.e. capture an Organisation or Resident name only)

[6] The household composition field includes both a number and description and can
have any of the following values.

AFD Common API
Desktop Integration Guide – February 2016

 - 61 -

1. 1 Male and 1 Female occupant with different surnames
2. 1 Male and 1 Female occupant with the same surname (married couples)
3. Mixed household
4. More than 2 persons with the same surname (e.g. older families).
5. 1 Male Occupant Only
6. 1 Female Occupant Only
7. More than 7 persons (e.g. old peoples home).

[7] The Size property can have any of the following values:
 A. 1 to 9 employees
 B. 10 to 19 employees
 C. 20 to 49 employees
 D. 50 to 99 employees
 E. 100 to 199 employees
 F. 200 to 499 employees
 G. 500 to 999 employees
 H. 1000+
 (If blank then this is unknown or not applicable).

[8] The phone match type will be set to F if the phone number has been matched to the
full name of this resident, or S if just to the surname. This can be useful for identifying the bill
payer among multiple residents.

[9] DataSet property when used with the Names & Numbers TraceMaster product can
currently be any of the following years: 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 or
Current (for the current data). Only one year can be specified at a time and
searches/lookup’s will fail if the specified year has not been installed. New years are
automatically accessible when they become available if installed with no change required to
the DLL or your application.

[10] The Product field can have any of the following values:
AFD Postcode
AFD Postcode Plotter
AFD Postcode Plus
AFD Names & Numbers
AFD Names & Numbers TraceMaster

[11] The Urban Rural Code differs from England and Wales, Scotland and Northern
Ireland. The possible codes and there meanings are as follows:

England & Wales
1. Urban (Sparse): Falls within Urban settlements with a population of 10,000 or more and the
wider surrounding area is sparsely populated
2. Town and Fringe (Sparse): Falls within the Small Town and Fringe areas category and the
wider surrounding area is sparsely populated.
3. Village (Sparse): Falls within the Village category and the wider surrounding area is
sparsely populated.
4. Hamlet and Isolated Dwelling (Sparse): Falls within the Hamlet and Isolated Dwelling
category and thee wider surrounding area is sparsely populated.
5. Urban (Less Sparse): Falls within urban settlements with a population of 10,000 or more
and the wider surrounding area is less sparsely populated.
6. Town and Fringe (Less Sparse): Falls within the Small Town and Fringe areas category
and the wider surrounding area is less sparsely populated.
7. Village (Less Sparse): Falls within the village category and the wider surrounding area is
less sparsely populated.
8. Hamlet and Isolated Dwelling (Less Sparse): Falls within the Hamlet & Isolated Dwelling
category and the wider surrounding area is less sparsely populated

Scotland
S1. Large Urban Area: Settlement of over 125,000 people.

AFD Common API
Desktop Integration Guide – February 2016

 - 62 -

S2. Other Urban Area: Settlement of 10,000 to 125,000 people.
S3. Accessible Small Town: Settlement of 3,000 to 10,000 people, within 30 minutes drive of
a settlement of 10,000 or more.
S4. Remote Small Town: Settlement of 3,000 to 10,000 people, with a drive time of 30 to 60
minutes to a settlement of 10,000 or more.
S5. Very Remote Small Town: Settlement of 3,000 to 10,000 people, with a drive time of over
60 minutes to a settlement of 10,000 or more.
S6. Accessible Rural: Settlement of less than 3,000 people, within 30 minutes drive of a
settlement of 10,000 or more.
S7. Remote Rural: Settlement of less than 3,000 people, with a drive time of 30 to 60 minutes
to a settlement of 10,000 or more.
S8. Very Remote Rural: Settlement of less than 3,000 people, with a drive time of over 60
minutes to a settlement of 10,000 or more.

Northern Ireland
A - E (Urban):
A. Belfast Metropolitan Urban Area
B. Derry Urban Area
C. Large Town: 18,000 and under 75,000 people
D. Medium Town: 10,000 and under 18,000 people
E. Small Town: 4,500 and under 10,000 people
F - H (Rural):
F. Intermediate Settlement: 2,250 and under 4,500 people
G. Village: 1,000 and under 2,250 people
H. Small Village, Hamlet or Open Countryside: Less than 1,000 people

[12] The record type will be one of the following:

General Delivery
Highrise
Firm
Street
PO Box
Rural Route/Highway Contract
Multi-Carrier Route

AFD Common API
Desktop Integration Guide – February 2016

 - 63 -

Appendix B. BankFinder Fields

 Field returned by this product and fully searchable
 Field returned by this product, but searchable only through the Search

Text field only.

Note: The API Wizard will add one to the default size for development
environments that normally use null terminated strings, e.g. C++ and C# to
accommodate the null terminator.

Also note that the alternative address formats provided do share some of the
same fields where there data is identical, but you should not mix and match
other fields between the different formats as this could lead to address
corruption. For example with Standard Address Fields the Street or Locality
field could include a street number, whereas with Raw PAF Fields the number
would be in the separate Number field.

Field Name

Default
Size

Description

B
a
n

k
F

in
d

e
r

General Fields

Lookup 255 Specify sort code, postcode and fast-find lookup
string’s here for lookup operations.



ClearingSystem 25 Clearing system for this record [3] 

Key 40 Provides a key which can be used to easily
retrieve the record again, e.g. when a user clicks
on an item in the list box.



List 512 Provides a list item formatted to be added to a list
box for this record.



Product 40 Provides the product name used [10] 

SearchText 255 Specify text to search for within any of the
BankFinder fields



General Bank Fields

SortCode 6 Bank’s Sortcode 

BankBIC 8 Bank BIC Code [1] 

BranchBIC 3 Branch BIC Code [1] 

SubBranchSuffix 2 Allows a branch to be uniquely identified where
there is a cluster of branches sharing the same
Sort Code [1]



ShortBranchTitle 27 The official title of the branch 

FullBranchTitle 105 Extended title for the institution 

CentralBankCountryCode 2 The ISO Country code for beneficiary banks in
other countries



CentralBankCountryName 20 The country name corresponding to the ISO code
given.



SupervisoryBodyCode 1 Indicates the supervisory body for an institution
that is an agency in any of the clearings. [2]



SupervisoryBodyName 50 The name of the supervisory body [2] 

DeletedDate 10 Specifies the date the branch was closed if it is
not active



AFD Common API
Desktop Integration Guide – February 2016

 - 64 -

BranchType 20 The branch type - Main Branch, Sub or NAB
Branch, Linked Branch



MainBranchSortCode 6 Set for linked branches in a cluster. It identifies
the main branch for the cluster. For IPSO records
this is set to the branch that would handle
transactions for this sortcode when the branch
has been amalgamated with another.



Location 60 Where present helps indicate the physical location
of the branch.



BranchName 35 Defines the actual name or place of the branch 

AlternativeBranchName 35 An alternative name or place for the branch where
applicable.



OwnerBankShortName 20 Short version of the name of the Owning Bank 

OwnerBankFullName 70 Full version of the name of the Owning Bank 

OwnerBankCode 4 The four digit bank code of the Owning Bank [1] 

Standard Address Fields (Formatted as an address would appear on an envelope)

Organisation 120 Owner Bank Full Name 

Property 65 Bank Postal Address: Property (Building) 

Street 60 Bank Postal Address: Street 

Locality 60 Bank Postal Address: Locality 

Town 30 Bank Postal Address: Town 

County 30 Bank Postal Address: County (Optional) 

Postcode 8 The Royal Mail Postcode for this address 

Raw PAF Fields (Formatted closer to how they appear on Raw PAF, useful if your database stores
fields this way)

OrganisationName 60 Owner Bank Full Name 

SubBuilding 60 Bank Postal Address: Sub-Building Name 

Building 60 Bank Postal Address: Building Name 

Number 10 Bank Postal Address: House Number 

DependentThoroughfare 60 Bank Postal Address: Sub-Street Name 

Thoroughfare 60 Bank Postal Address: Street Name 

Double DependentLocality 35 Bank Postal Address: Sub-Locality Name 

DependentLocality 35 Bank Postal Address: Locality Name 

Town 30 Bank Postal Address: Postal Delivery Town 

County 30 Bank Postal Address: County (Optional) 

Postcode 8 The Royal Mail Postcode for this address 

Alternative Postcode Fields (Can be used in-place of the Postcode field to provide it as separate
parts)

Outcode 4 The portion of the postcode before the space 

Incode 3 The portion of the postcode after the space 

Phone Number Related Fields

Phone 20 Phone Number for this bank 

Fax 20 Fax Number for this bank (IPSO only) 

BACS Related Fields (Not applicable to IPSO Records)

BACSStatus 5 Indicates the BACS Clearing Status [4] 

BACSStatusDescription 60 Provides a description for the status [4] 

BACSLastChange 10 Date on which BACS data was last amended 

BACSClosedClearing 10 Indicates the date the branch is closed in BACS
clearing if applicable.



BACSRedirectedFromFlag 1 Set to R if other branches are redirected to this
sort code.



BACSRedirectedToSortCode 6 This specifies the sort code to which BACS should
redirect payments addressed to this sort code if



AFD Common API
Desktop Integration Guide – February 2016

 - 65 -

applicable.

BACSSettlementBankCode 4 BACS Bank Code of the bank that will settle
payments for this branch.



BACSSettlementBankShortName 20 Short form name of the settlement bank 

BACSSettlementBankFullName 70 Full form name of the settlement bank 

BACSSettlementBankSection 2 Numeric data required for BACS to perform it’s
settlement.



BACSSettlementBankSubSection 2 Numeric data required for BACS to perform it’s
settlement.



BACSHandlingBankCode 4 BACS Bank Code of the member that will take
BACS output from this branch.



BACSHandlingBankShortName 20 Short form name of the handling bank 

BACSHandlingBankFullName 70 Full form name of the handling bank 

BACSHandlingBankStream 2 Numeric code defining the stream of output within
the Handling Bank that will be used or payments
to this branch.



BACSAccountNumbered 1 Set to 1 if numbered bank accounts are used 
BACSDDIVoucher 1 Set to 1 if Paper Vouchers have to be printed for

Direct Debit Instructions.



BACSDirectDebits 1 Set to 1 if branch accepts Direct Debits 
BACSBankGiroCredits 1 Set to 1 if branch accepts Bank Giro Credits 
BACSBuildingSocietyCredits 1 Set to 1 if branch accepts Building Society

Credits.



BACSDividendInterestPayments 1 Set to 1 if branch accepts Dividend Interest
Payments.



BACSDirectDebitInstructions 1 Set to 1 if branch accepts Direct Debit
Instructions.



BACSUnpaidChequeClaims 1 Set to 1 if branch accepts Unpaid Cheque Claims. 

CHAPS Related Fields (Not applicable to IPSO Records)

CHAPSPStatus 1 Indicates the CHAPS Sterling clearing Status [5] 
CHAPSPStatusDescription 80 Provides a description for the status [5] 
CHAPSPLastChange 10 Date on which CHAPS Sterling data was last

amended



CHAPSPClosedClearing 10 Indicates the date the branch is closed in CHAPS
Sterling clearing if applicable.



CHAPSPSettlementBankCode 3 CHAPS ID of the bank that will settle payments for
this branch,



CHAPSPSettlementBankShortNa
me

20 Short form of the name of the settlement bank 

CHAPSPSettlementBankFullName 70 Full form of the name of the settlement bank 
CHAPSEStatus 1 Indicates the CHAPS Euro clearing Status [6] 
CHAPSEStatusDescription 80 Provides a description for the status [6] 
CHAPSELastChange 10 Date on which CHAPS Euro data was last

amended



CHAPSEClosedClearing 10 Indicates the date the branch is closed in CHAPS
Euro clearing if applicable.



CHAPSEEuroRoutingBICBank 8 Specifies the SWIFT closed user group Bank BIC
to which CHAPS Euro payments for this branch
should be routed.



CHAPSEEuroRoutingBICBranch 3 Specifies the SWIFT closed user group Branch
BIC to which CHAPS Euro payments for this
branch should be routed.



CHAPSESettlementBankCode 3 CHAPS ID of the bank that will settle payments for
this branch.



CHAPSESettlementBankShortNa
me

20 Short form of the name of the settlement bank 

CHAPSESettlementBankFullName 70 Full form of the name of the settlement bank 
CHAPSEReturnIndicator 1 Set to R if this is the branch to which CHAPS Euro 

AFD Common API
Desktop Integration Guide – February 2016

 - 66 -

payments should be sent.

C&CCC Related Fields (Not applicable to IPSO Records)

CCCCStatus 1 Indicates the C&CCC clearing Status [7] 
CCCCStatusDescription 40 Provides a description for the status [7] 
CCCCLastChange 6 Date on which C&CCC data was last amended 
CCCCClosedClearing 30 Indicates the date the branch is closed in C&CCC

clearing if applicable.



CCCCSettlementBankCode 3 BACS generated code of the bank that will settle
payments for this branch.



CCCCSettlement BankShortName 20 Short form of the name of the settlement bank 
CCCCSettlement BankFullName 70 Full form of the name of the settlement bank 
CCCCDebitAgencySortCode 50 When the Status field is set to 'D' this specifies

where cheque clearing is handled for this branch.



CCCCReturnIndicator 6 Set if this is the branch that other banks should
return paper to. It will only be set for a sort code
of a Member.



Validation Related Fields

AccountNumber 12 The account number to validate (set along with
the sort code field for account number validation).



TypeOfAccount 1 The type of account field required for transmitting
data to BACS when the account number has been
translated.



RollNumber 20 For some building society credit accounts a roll
number is required. This can be specified here for
validation.



IBAN 50 The International Bank Account Number. This
contains the sort code and account number in a
standardised format for cross-border transactions.



BuildingSocietyName 70 For building society accounts requiring a roll
number this will contain the name of the recieving
building society as this sometimes differs from the
bank branch that the payment passes through.



CardNumber 20 Used to specify a card number to validate 

ExpiryDate Optional field to specify an expiry date to validate
along with the card number.



CardType 30 Indicates the card type following validation [8] 

Notes:

[1] Does not apply to records in the IPSO (Irish Payment Services Organisation) clearing

system.

[2] The supervisory body code and name can be any of the following:
 A. Bank of England
 B. Building Society Commission
 C. Jersey, Guernsey or Isle of Man authorities
 D. Other

[3] The clearing system property can have one of the following values

United Kingdom (BACS) – For branch records for the UK clearing system
Ireland (IPSO) – For branch records on the Irish Payment Services Organisation
Clearing System
Both UK and Irish – Returned by Account Number Validation only when a branch is
on both systems.

AFD Common API
Desktop Integration Guide – February 2016

 - 67 -

Note, that you should only accept account numbers validated on the Irish system if
you can clear through both the Irish (IPSO) system as well as the UK (BACS) system.

[4] Possible values for the BACS Status and Description fields are as follows:
 M. Branch of a BACS Member
 A. Branch of an Agency Bank
 I. Member of the Irish Clearing Services (IPSO)
 Does not accept BACS Payments

[5] Possible values for the CHAPS Sterling Status and Description fields are as follows:

M. Direct Branch of a CHAPS £ Member that Accepts CHAPS £ Payments
 A. Branch of an Agency Bank that Accepts CHAPS £ Payments

I. Indirect Branch of a Member or Agency Bank that Accepts CHAPS £
Payments

 Does not accept CHAPS £ Payments

[6] Possible values for the CHAPS Euro Status and Description fields are as follows:

D. Direct Branch of a CHAPS € Member that Accepts CHAPS € Payments
I. Indirect Branch of a Member or Agency Bank that Accepts CHAPS €

Payments
 Does not accept CHAPS € Payments

[7] Possible values for the C&CCC Status and Description fields are as follows:
 M. Branch of a C&CCC Member
 F. Full Agency Bank Branch
 D. Debit Agency Branch Only
 Not Part of the C&CCC Clearing

[8] Possible values for the card type field are as follows:
 MasterCard
 Visa
 American Express
 Visa Debit
 Electron
 Visa Purchasing
 UK Maestro
 International Maestro
 Solo and Maestro
 JCB
 Charities Aid Foundation
 MasterCard Debit

 [10] The Product field would have the value ‘AFD BankFinder’.

AFD Common API
Desktop Integration Guide – February 2016

 - 68 -

Appendix C. Nearest Fields

 Field returned by this product and can be used in a Lookup
 Field returned by this product, but not searchable.

Field Name

Default
Size

Description N

e
a
re

s
t

General Fields

Lookup 255 Used to specify the string to process 

GBGridE 10 Provides the Grid Easting value for the nearest record or a Grid
Easting to lookup if no lookup string is supplied.



GBGridN 10 Provides the Grid Northing value for the nearest record or a Grid
Easting to lookup if no lookup string is supplied.



NIGridE 10 Provides the Grid Easting value on the Irish Grid System. 
NIGridN 10 Provides the Grid Northing value on the Irish Grid System. 
Latitude 10 Latitude representation of Grid Reference in Decimal Format

(WGS84)



Longitude 10 Longitude representation of Grid Reference in Decimal Format
(WGS84)



TextualLatitude 15 A textual representation of the Latitude field 

TextualLongitude 15 A textual representation of the Longitude field 

Km 10 Distance of this record from supplied grid reference in
kilometres, or the maximum distance to return records for.



Miles 10 Distance of this record from supplied grid reference in miles, or
the maximum distance to return record for.



List 512 Provides a list item formatted to be added to a list box for this
record.



Key 40 Provides a key which can be used to easily retrieve the record
again, e.g. when a user clicks on an item in the list box.



Product 40 Indicates the product name used 

MaxRecords 5 Specifies the maximum number of records to return. 

In addition to these all the fields contained in the database table that you are
using with Nearest are also returned and are fully searchable when using the
Search operation.

AFD Common API
Desktop Integration Guide – February 2016

 - 69 -

Appendix D. List Fields

 Field returned by this product and fully searchable
 Field returned by this product, but not searchable.

All List Operations:

Field Name

Default
Size

Description S

tr
in

g

General Fields

Lookup 255 For an alias locality lookup this specifies the postcode or record
key to find the alias localities for.
With Names & Numbers Field Lists this specifies that only those
entries starting with this string should be returned.



List 255 Returns each list entry 

Product 40 Indicates the product name used 

AFD Common API
Desktop Integration Guide – February 2016

 - 70 -

Appendix E. Utility Fields

 Field returned by this product and fully searchable
 Field returned by this product, but not searchable.

Grid Utility:

Field Name

Default
Size

Description S

tr
in

g

General Fields

Lookup 255 Used to specify the string to process 

GBGridE 10 Grid Easting Reference - GB Grid 

GBGridN 10 Grid Northing Reference - GB Grid 

NIGridE 10 Grid Easting Reference - Irish Grid 
NIGridN 10 Grid Northing Reference - Irish Grid 
Latitude 10 Latitude representation of Grid Reference in Decimal Format

(WGS84)



Longitude 10 Longitude representation of Grid Reference in Decimal Format
(WGS84)



TextualLatitude 15 Latitude representation of Grid Reference in Direction, Degrees,
Minutes and Seconds



TextualLongitude 15 Latitude representation of Grid Reference in Direction, Degrees,
Minutes and Seconds



Km 6 Specifies the string to search for 

Miles 6 Specifies the string to replace occurrences of Search with. 

GBGridEFrom 10 Grid Easting Reference - GB Grid – used to specify two points
for a distance calculation



GBGridNFrom 10 Grid Northing Reference - GB Grid – used to specify two points
for a distance calculation



NIGridEFrom 10 Grid Easting Reference - Irish Grid – used to specify two points
for a distance calculation



NIGridNFrom 10 Grid Northing Ref. - Irish Grid – used to specify two points for a
distance calculation



LatitudeFrom 10 Latitude representation of Grid Reference in Decimal Format
(WGS84) – used to specify two points for a distance calculation



LongitudeFrom 10 Longitude representation of Grid Reference in Decimal Format
(WGS84) – used to specify two points for a distance calculation



TextualLatitudeFro
m

15 Latitude representation of Grid Reference in Direction, Degrees,
Minutes and Seconds – used to specify two points for a distance
calculation



TextualLongitudeF
rom

15 Latitude representation of Grid Reference in Direction, Degrees,
Minutes and Seconds – used to specify two points for a distance
calculation



Email Utility:

Field Name

Default
Size

Description E

m
a
il

Email Field

AFD Common API
Desktop Integration Guide – February 2016

 - 71 -

Email 255 The Email Address to validate 

String Utility – Depreciated and Unsupported:

Field Name

Default
Size

Description S

tr
in

g

General Fields

Lookup 255 Used to specify the string to process 

Postcode 10 Provides the postcode output where applicable 

Outcode 4 Provides the outcode portion of the postcode where applicable. 

Incode 3 Provides the incode portion of the postcode where applicable. 
County 30 Provides the abbreviated county name where applicable. 
Search 255 Specifies the string to search for 

Replace 255 Specifies the string to replace occurrences of Search with. 

AFD Common API
Desktop Integration Guide – February 2016

 - 72 -

Appendix F. Refiner Address Fields

When cleaning an address, you can use any of the address fields in the
structure to specify the address. These do not need to match up to the actual
fields, for example if you have Address Line 1, Address Line 2, Address Line 3
and Postcode in your database you could set these to Property, Street,
Locality and Postcode fields in the structure and they will be cleaned and
returned in the correct named fields when matched.

The address fields that you can use to specify the address to be cleaned are
as follows:

Standard Fields
Organisation
Property
Street
Locality
Town
PostalCounty
AbbreciatedPostalCounty
OptionalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Postcode

Raw Fields
Department
OrganisationName
SubBuilding
Building
Number
DependantThoroughfare
Thoroughfare
DoubleDependantLocality
DependantLocality
Town
PostalCounty
AbbreciatedPostalCounty
OptionalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Postcode

BS7666 Fields
Department
Organization
SubUnit

AFD Common API
Desktop Integration Guide – February 2016

 - 73 -

BuildingName
BuildingNumber
SubStreet
DeliveryStreet
SubLocality
DeliveryLocality
DeliveryTown
PostalCounty
AbbreciatedPostalCounty
OptionalCounty
AbbreviatedOptionalCounty
TraditionalCounty
AdministrativeCounty
Code

Large Number of Address Lines

If you have more address lines then a normal address will allow you can still
send these to the Refiner API simply by making use of all the county fields in
order, for example with standard fields:

Address Line 1 = Organisation
Address Line 2 = Property
Address Line 3 = Street
Address Line 4 = Locality
Address Line 5 = Town
Address Line 6 = PostalCounty
Address Line 7 = AbbreciatedPostalCounty
Address Line 8 = OptionalCounty
Address Line 9 = AbbreviatedOptionalCounty
Address Line 10 = TraditionalCounty
Address Line 11 = AdministrativeCounty
Address Line 12 = Postcode

If your address lines are too long for the default lengths (e.g. County fields are
only 30 characters long) you can increase these in your Field Specification as
required.

Cleaned Address

Refiner will always output the cleaned data in the correct fields for the format
you have selected. You can write the data back to your database in any form
that you wish.

AFD Common API
Desktop Integration Guide – February 2016

 - 74 -

Appendix G. BS7666-5:2006

When using AFD Address Management products the Common API has the
option to return an address in BS7666 format. You should note that this is the
proposed BS7666 Part 5 (BS 7666-5:2006) and AFD will ensure that any
necessary changes are made to conform to the final specification for Part 5 of
BS7666 when it is released.

The proposed Part 5 of the BS7666 specification is the one which is intended
for a delivery point gazetteer and so is designed to provide a standard for
postal addresses of the type which AFD Software provides. Older standards
such as BS 7666-3:2000 dealt with address specification but these were not
specific to postal addresses and as such were not suitable for providing
address data.

You should note that, strictly speaking, only AFD Postcode Plus is a delivery
point gazetteer which can comply with this standard, as it contains addresses
at delivery point level. However, both AFD Names & Numbers and AFD
Postcode can also return fields in this format which can be used to aid
BS7666 compliance in your address database. AFD Names & Numbers
contains these compliant addresses along with additional Name data.

This appendix explains how to use the fields returned by the Common API in
this address format to capture addresses compliant with this standard.

Gazetteer MetaData

You will require the following Gazetteer MetaData to use for compliance with
the proposed BS7666-5:2006:

Field Value

Name “Postal Delivery Point Gazetteer”

Scope “Premises receiving a postal delivery from Royal Mail”

Territory of Use “Great Britain, Northern Ireland, Isle of Man and Channel Islands”

Gazetteer Owner “AFD Software Ltd”

Custodian “AFD Software Ltd”

Coordinate System “National Grid of Great Britain”

Spatial Referencing
System

“Postal Address”

Current Date <Use the BuildDate Field from AFDData>

Language “ENG”

Delivery Point Records

For each delivery point record returned from a Lookup or Search in the AFD
data the following shows how the BS7666 fields returned correlate to those in
the proposed BS7666-5:2006 standard:

Field AFD Field To Use

Identifier Identifier

Start Date BuildDate – AFD products are a complete data refresh so they
come into use at the build date.

AFD Common API
Desktop Integration Guide – February 2016

 - 75 -

Entry Date BuildDate – You may wish to change this to the date you input an
address onto your database.

Update Date BuildDate – You may wish to change this to the date you update
an address onto your database.

Position

 X GBGridE

 Y GBGridN

Spatial Reference

 Identifier Identifier

 Language Language

 Department Department

 Organization Organization

 Sub-Unit SubUnit

 Building Name BuildingName

 Building Number BuildingNumber

 Sub-Street SubStreet

 Delivery Street DeliveryStreet

 Sub-Locality SubLocality

 Delivery Locality DeliveryLocality

 Delivery Town DeliveryTown

 County This is an optional attribute and if you wish to include a County
you can use any of the County fields defined in Appendix A as you
desire.

 Code Code

Administrator Administrator

Data Quality Report

For BS 7666-5:2006 compliance a data quality report is now also required.

Lineage
The delivery point information present in AFD Postcode Plus is derived from
the Royal Mail Postcode Address File, with updates provided on a quarterly or
annual basis depending on if you have purchased quarterly updates. The
data in the Royal Mail Postcode Address File is included in it’s entirety
however is processed to conform to the BS 7666-5:2006 standard, which PAF
in it’s raw form does not comply with. In AFD Names & Numbers additional
postal delivery points are also available which are obtained from Electoral Roll
data but which do not appear on PAF.

Currency
This date is specified by the BuildDate Field of the AFDData structure.

Positional Accuracy
Using the default DataTalk GeoRef grid references, the co-ordinates of the
gazetteer are to a 10m resolution. These provide the approximate location of
the postcode for which the address falls.

If using Royal Mail Postzon grid references, the co-ordinates of the gazetteer
are to 100m resolution and are provided by the Gridlink® consortium (of which
the Office of National Statistics (ONS), Ordnance Survery (OS), Ordnance
Survey of Northern Ireland (OSNI), the General Register Office for Scotland
(GROS) and Royal Mail are all a part). These are generally given as the top

AFD Common API
Desktop Integration Guide – February 2016

 - 76 -

left of the 100m square for which the property at the centre of the postcode
falls. They are constantly verified and updated and full details of their
accuracy should be obtained from GridLink members if required.

If accuracy is important, and for a resolution within 1m of the postcode,
Ordnance Survey CodePoint grids are an optional extra for address
management products and are used in-place of GeoRef/Postzon grid
references.

Attribute Accuracy
The data in AFD Postcode Plus is accurate in that it contains all postal
delivery points held by Royal Mail. Royal Mail PAF is quoted as being 96.1%
accurate in 2003 and a new accuracy measure is being developed which
should be able to provide a better picture of its accuracy. AFD Names &
Numbers contains Royal Mail PAF data to the same accuracy along with
additional addresses present on the Electoral Roll but not in PAF.

Completeness
The data in AFD Postcode Plus is accurate and contains 100% of PAF
records with no duplicates and tests against the original PAF data are carried
out to verify this. Royal Mail PAF is quoted as being 96.1% accurate and that
reflects it’s completeness too – a better break down should be available once
Royal Mail have developed a new accuracy measure. AFD Names &
Numbers contains Royal Mail PAF data to the same accuracy, and additional
addresses are presented as complete as is possible – no independent
measure of that accuracy is available. They may well be duplicate addresses
on AFD Names & Numbers as they cannot be matched to PAF but may
identify the same delivery point.

Logical Consistency
The records in the data have been tested against the specification for the
gazetteer to ensure that all are recorded in a consistent manual. This was
done with both fully automated tests, and manually sampling addresses to
ensure the format they appear is both consistent with the proposed BS 7666-
5:2006 standard and with the other addresses present.

AFD Common API
Desktop Integration Guide – February 2016

 - 77 -

Appendix H. Grid References

AFD Postcode Plotter, AFD Postcode Plus, AFD Names & Numbers, and AFD
Names & Numbers TraceMaster all contain grid references. DataTalk GeoRef
is a Postcode level grid reference data supplied by AFD for distance
calculations, nearest calculations and data / location analysis. It is made up of
a six digit Easting and a six digit Northing. This reference relates the location
of the Postcode to the National Grid (or Irish Grid for Northern Ireland
Postcodes (start with BT).

DataTalk GeoRef is a good alternative to Postzon. However, Postzon, Code
Point and Address Point data options are available at additional cost.

The grid references returned by these products are available in the following
Fields:

GridE, GridN

This pair of grid references denotes the grid reference for the postcode on the
National Grid of Great Britain for all postcodes other than those in Northern
Ireland. For Northern Ireland the grid reference is returned in the Irish grid.
The Grid References are provided as a 6 digit grid northing (7 digits for some
northernmost parts of Scotland) and a 6 digit grid easting.

GBGridE, GBGridN

This pair of grid references denotes the grid reference for the postcode on the
National Grid of Great Britain. This is used for all addresses in England,
Scotland and Wales and can also be convenient to use for addresses in
Northern Ireland in order to provide a common baseline with the rest of the
UK. The Grid References are provided as a 6 digit grid northing (7 digits for
some northernmost parts of Scotland) and a 6 digit grid easting.

NIGridE, NIGridN

This pair of grid references denotes the grid reference for the postcode on the
Irish Grid System. This is used for all addresses in Northern Ireland, and a
conversion is provided for addresses in the rest of the UK so it can be used as
a common baseline if preferred for companies operating mainly in Northern
Ireland. The Grid References are provided as a 6 digit grid northing and a 6
digit grid easting.

Latitude, Longitude

This pair of latitude and longitude values are provided in decimal format to
four decimal places. These values are based on the WGS84 standard - the
one in most common usage with GPS systems. However you should note
that these references can only be as good as the grid references that they are
converted from.

AFD Common API
Desktop Integration Guide – February 2016

 - 78 -

Textual Latitude, Textual Longitude

These also provide the latitude and longitude values as above but they are
provided in a textual representation which, while being less useful as input to
computer related applications, can be more readable to a user as they provide
the direction, degrees, minutes and seconds components of the latitude and
longitude value for this location.

AFD Common API
Desktop Integration Guide – February 2016

 - 79 -

