

AFD BankFinder for Android API

Integration Guide

May 2013

AFD BankFinder for Android API

Integration Guide – May 2013

 - 2 -

Table of Contents

1. Introduction...3
2. Getting Started...3

3. Using the Sample Application ...4
4. ‘How To’ Guide ..5

4.1 Lookup or Search for Bank Records ..5

4.2 Retrieve Record...6
4.3 Validate Account Details ..6

4.4 Validate Card Number ..7
4.5 Saving the License File (Non-Evaluation Only)8
4.6 Updating Data Files (Non-Evaluation Only) ..8

5. Function Reference.. 10
5.1 Clear ... 10

5.2 BankGetFirst ... 10
5.3 BankGetNext ... 10
5.4 JumpToRecord ... 11

5.5 ValidateAccount.. 11
5.6 ValidateCard ... 13

5.7 ErrorText .. 14
5.8 CardText .. 14
5.9 SaveLicense.. 14

5.10 CheckForUpdate .. 14
5.11 DownloadUpdate .. 15

5.12 IsDownloadComplete... 15
5.13 ApplyUpdate.. 15

6. Properties Reference ... 15

AFD BankFinder for Android API

Integration Guide – May 2013

 - 3 -

1. Introduction

The AFD BankFinder for Android API is easy to use and quick to implement in
any Objective C application, while balancing that with providing full flexibility.

A JAR file (afdbank.jar) alongside our native library (libafdbank.so) provides
access to BankFinder functionality once added to your project.

2. Getting Started

For rapid development and for a quick start, take a look at our sample
program to see how BankFinder is integrated. When you run that on Android

you will need to copy your licence file to your chosen data folder on the device
(unless using evaluation data). The data files (bacs.afd and bacsi.afd) will

also need to be present either along with your application or on external
storage. If file transfer is more difficult, you can simplify this by transfering the
licence file using the SaveLicense method and obtain the latest data files

automatically using the update functionality.

To integrate BankFinder into your own Project simply add the afdbank.jar file
to your project libs folder and the libafdbank.so to libs\armeabi. Then create
an instance of the afd.bf.Engine class to access AFD BankFinder functionality.

On creating an instance of the afd.bf.Engine class you should pass the path to

access the product data files from, for example for application private storage:

Engine bfEngine = new afd.bf.Engine(getFilesDir());

Or for an example of an external path:

Engine bfEngine = new afd.bf.Engine(“/mnt/sdcard/bfdata/”);

For non-evaluation purposes we recommend using the automatic update
functionality to obtain the latest data files and using the saveLicense method
to save the licence from a Base64 encoded string.

AFD BankFinder for Android API

Integration Guide – May 2013

 - 4 -

3. Using the Sample Application

A sample application demonstrating AFD BankFinder functionality is provided
with the SDK.

To use this load the project in Eclipse and then click Run and follow any
prompts to start the application on your device.

The path to the data folder is set in the top of the common.java and is
displayed on the FastFind screen of the sample application. You may need to

change this to point to an appropriate location for your target device.

For Evaluation data, copy that data to a folder on the device, or include it in
your apk and ensure you have set the data path correctly as above.

For Full data, either transfer the afdbank.lic licence file to the device or use
the saveLicense method to generate the file from a Base64 string that AFD

will have supplied. Then use the checkForUpdates function to obtain the
latest data.

AFD BankFinder for Android API

Integration Guide – May 2013

 - 5 -

4. ‘How To’ Guide

4.1 Lookup or Search for Bank Records

The bankGetFirst and bankGetNext methods allow bank records to quickly be
located.

This is typically done as follows:

 Call the clear method to clear any previous search criteria

 Set the appropriate search properties with the criteria to use. (e.g.

setSearchLookup to specify a fast-find string to look for, e.g. a sort
code)

 Call bankGetFirst to retrieve the first matching record, specifying the
clearing system you wish to use (e.g. AFD_ALL_RECORDS or

AFD_UK_ONLY).

 If bankGetFirst < 0 report an error, otherwise call bankGetNext
repeatedly until END_OF_SEARCH is returned to return all matching

records.

 If the return value is SUCCESS, read the required properties from the

record returned to obtain the required data. If the return value is
RECORD_BREAK no new record data will be returned so continue to

call bankGetNext

See the appropriate function and property references for full details of these

methods and properties.

An example lookup is as follows:

// Create an instance of the afd.bf.Engine class

Engine bfEngine = new afd.bf.Engine();

// Set the search criteria

bfEngine.clear();

bfEngine.setSearchLookup("560035");

// Do the lookup

int retVal = bfEngine.bankGetFirst(bfEngine.AFD_ALL_RECORDS);

// Deal with any error

if (retVal < 0) {

 AlertDialog.Builder dlgAlert = new AlertDialog.Builder(this);

 dlgAlert.setTitle("Error");

 dlgAlert.setMessage(bfEngine.errorText(retVal));

 dlgAlert.create().show();

 return;

}

// Retrieve the results

while (retVal >= 0) {

 if (retVal != bfEngine.AFD_RECORD_BREAK) {

 String listItem = bfEngine.getListItem();

 // do something with this data

 }

AFD BankFinder for Android API

Integration Guide – May 2013

 - 6 -

 retVal = bfEngine.addressGetNext();

}

4.2 Retrieve Record

The jumpToRecord method enables records to be quickly retrieved again
(from a list displayed to the user, for example) using its record key.

This is typically done as follows:

 Store the result of the getRecordKey function along with the item at the
time of original retrieval.

 Call jumpToRecord with key of the record you wish to retrieve

 If JumpToRecord < 0 report an error

 If the return value is AFD_SUCCESS, read the required properties from
the record returned to obtain the required data.

See the appropriate function and property references for full details of this
method and properties.

An example retrieve is as follows, where recordKey is the result of calling
getRecordKey for the record you originally retrieved:

// Create an instance of the afd.nn.Engine class

Engine bfEngine = new afd.bf.Engine();

// Do the lookup

int retVal = bfEngine.jumpToRecord(recordKey);

// Deal with any error

if (retVal < 0) {

 AlertDialog.Builder dlgAlert = new AlertDialog.Builder(this);

 dlgAlert.setTitle("Error");

 dlgAlert.setMessage(bfEngine.errorText(retVal));

 dlgAlert.create().show();

 return;

}

// Retrieve the result

String bankName = bfEngine.getBankOwnerBankFullName();

String branchTitle = bfEngine.getBankFullBranchTitle();

String sortCode = bfEngine.getBankSortCode();

// do something with this data

4.3 Validate Account Details

The ValidateAccount method enables bank account details to be validated.

This is typically done as follows:

 Call the ValidateAccount with the account number and sort code to be

validated.

AFD BankFinder for Android API

Integration Guide – May 2013

 - 7 -

 If ValidateAccount returns < 0 report an error, otherwise report success

See the ValidateAccount reference for full details of this method.

An example account validation is as follows:

// Create an instance of the afd.bf.Engine class

Engine bfEngine = new afd.bf.Engine();

// define variables to pass to the validateAccount function

int flags = 0;

String sortCode="774814”;

String accountNo = "24782346";

String typeOfAccountCode = "";

String rollNumber = "";

String needRollNumber = "";

String iban = "";

String countryName = "";

// Do the validation

int retVal = bfEngine.validateAccount(flags, sortCode, accountNo,

typeOfAccountCode, rollNumber, needRollNumber, iban, countryName);

/* Display the result – note that the sortcode and account number may

have been updated if account translation was necessary (e.g. a non-

standard length account number was supplied) */

if (retVal >= 0) {

 AlertDialog.Builder dlgAlert = new AlertDialog.Builder(this);

 dlgAlert.setTitle("Account Details Validated");

 dlgAlert.setMessage("Account Number Valid");

 dlgAlert.create().show();

}

else {

 AlertDialog.Builder dlgAlert = new AlertDialog.Builder(this);

 dlgAlert.setTitle("Error");

 dlgAlert.setMessage(bfEngine.errorText(retVal));

 dlgAlert.create().show();

 return;

}

4.4 Validate Card Number

The validateCard method enables card numbers to be validated.

This is typically done as follows:

 Call validateCard with the card number (and optionally expiry date) to
be validated.

 If validateCard returns < 0 report an error, otherwise report the card
type

See the validateCard reference for full details of this method.

An example card validation is as follows:

AFD BankFinder for Android API

Integration Guide – May 2013

 - 8 -

// Create an instance of the afd.bf.Engine class

Engine bfEngine = new afd.bf.Engine();

// define variables to pass to the validateAccount function

int revisionID = 2; // for future proofing

String cardNumber="4903005748392742";

String expiryDate = "";

// Do the validation

int retVal = bfEngine.validateCard(revisionID, cardNumber,

expiryDate);

/* Display the result */

if (retVal >= 0) {

 AlertDialog.Builder dlgAlert = new AlertDialog.Builder(this);

 dlgAlert.setTitle("Card Details Validated");

 dlgAlert.setMessage(bfEngine.cardType(retVal));

 dlgAlert.create().show();

}

else {

 AlertDialog.Builder dlgAlert = new AlertDialog.Builder(this);

 dlgAlert.setTitle("Error");

 dlgAlert.setMessage(bfEngine.errorText(retVal));

 dlgAlert.create().show();

 return;

}

4.5 Saving the License File (Non-Evaluation Only)

To use full data with AFD BankFinder, a License will need to be purchased
from AFD. This is provided in two forms, a file afdbank.lic and a Base64

encoded version to make entry or transfer easier.

Either save the afdbank.lic file in your data folder, or use the saveLicense

method to pass the supplied base64 encoded text string to apply the license.

The process to do this is typically as follows:

 Obtain the licence data, e.g. by user entry, a file you supply etc. (Do

not hard-code this unless you can update your application each year
with the new license details).

 Call saveLicense supplying the licence string as a parameter, if this
does not return 1 then the string was invalid.

 Test BankFinder functionality to ensure the licence is valid.

An example of doing this is as follows:

int applied = bfEngine.saveLicense(licenseString);

if (applied == 1) {

 // success

}

else {

 // license string not valid

AFD BankFinder for Android API

Integration Guide – May 2013

 - 9 -

}

4.6 Updating Data Files (Non-Evaluation Only)

To update BankFinder data, the data files (bacs.afd and bacsi.afd) need to be
replaced in your data folder with the latest versions available from our server.

This can be done automatically using instance functions of the afd.bf.Engine
class provided for updating.

The process to do this is typically as follows:

 Call checkForUpdate, if this does not return 1 then no update is
available so abort

 When convenient call downloadUpdate to commence downloading the
file. This function returns a response immediately so that you can

continue using the software whilst the download progresses. If it
returns 0 then no update is available, -1 indicates it couldn’t connect to
the update server.

 Check periodically by calling isDownloadComplete to determine if the
download has completed, when it returns 1 the download has

completed, <0 indicates an error downloading

 Once downloaded call applyUpdate at an appropriate time to apply and
load the new dataset.

An example of doing this is as follows:

int needUpdate = afd.bf.Engine.checkForUpdate();

if (needUpdate == 1) {

 int startedDownload = afd.bf.Engine.downloadUpdate();

 if (startedDownload == 1) {

 while (afd.bf.Engine.isDownloadComplete() == 0) {

 // wait for download to complete – can carry on with other

tasks

 }

 int updateApplied = afd.bf.Engine.applyUpdate();

}

AFD BankFinder for Android API

Integration Guide – May 2013

 - 10 -

5. Function Reference

5.1 clear

Clears the search properties ready to start a new search

public void clear();

This function takes no parameters and returns no value.

5.2 bankGetFirst

Starts a lookup or search and returns the first record

Prior to calling this function, call Clear and set the appropriate search

parameters to specify the fields you wish to search for (e.g.
setSearchLookup).

public int bankGetFirst(int flags)

flags is an integer and specifies which clearing systems to use. The possible
options are:

AFD_ALL_RECORDS - Return all records (both systems)
AFD_UK_ONLY - Only return records on the BACS system

AFD_IRISH_ONLY - Only return records on the IPSO system

The function returns one of the following values:

AFD_SUCCESS - Successful lookup (result returned)

AFD_RECORD_BREAK - Search in progress call bankGetNext to
 get the next result
AFD_NOT_FOUND - No matching records found

AFD_ERROR_OPENING_FILES - Error opening BankFinder data files
AFD_DATA_LICENSE_ERROR - Data Licence Error

AFD_NO_SEARCH_DATA - No search parameters were set (or all set
 to empty strings)

If AFD_SUCCESS is returned you can then call any of the properties to obtain
the fields for the returned record, e.g. getBankSortCode.

If AFD_SUCCESS or AFD_RECORD_BREAK is returned you should call
bankGetNext to retrieve each subsequent record until

AFD_END_OF_SEARCH is returned.

5.3 bankGetNext

Continues a lookup or search, returning the next matching record

public int addressGetNext()

AFD BankFinder for Android API

Integration Guide – May 2013

 - 11 -

This function takes no parameters.

The function returns one of the following values:

AFD_SUCCESS - Successful lookup (result returned)
AFD_RECORD_BREAK - Search in progress call bankGetNext to

 get the next result
AFD_ERROR_OPENING_FILES - Error opening BankFinder data files

AFD_DATA_LICENSE_ERROR - Data Licence Error
AFD_END_OF_SEARCH - End of Search Reached

If AFD_SUCCESS is returned you can then call any of the properties to obtain
the fields for the returned record, e.g. getBankSortCode.

If AFD_SUCCESS or AFD_RECORD_BREAK is returned you should
continue to call bankGetNext to retrieve each subsequent record until

AFD_END_OF_SEARCH is returned.

5.4 jumpToRecord

Returns data for the record key supplied

public int jumpToRecord(int recordKey)

The recordNumber parameter is the key of the record to be retrieved. This
would have been returned by using the getRecordKey method following a
previous call to BankGetFirst or BankGetNext. Note this key should not be

stored as it is not maintained across data updates; it is designed for re-
retrieving a record following a list being provided to the user.

The function returns one of the following values:

AFD_SUCCESS - Successful lookup (result returned)
AFD_NOT_FOUND - No matching records found (key must be

 incorrect)
AFD_ERROR_OPENING_FILES - Error opening BankFinder data files
AFD_DATA_LICENSE_ERROR - Data Licence Error

If AFD_SUCCESS is returned, any of the properties can be called to obtain

the fields for the returned record, e.g. getBankSortCode.

5.5 validateAccount

Used to validate a sortcode and account number (or IBAN) to check it passes
validation.

public int validateAccount(int flags, String sortCode, String accountNo, String
rollNumber, String iban);

AFD BankFinder for Android API

Integration Guide – May 2013

 - 12 -

Parameters should be initialised to a blank string as appropriate if unused.

flags is an integer and specifies which clearing systems to use. The possible

options are:

AFD_ALL_RECORDS - Return all records (both systems)

AFD_UK_ONLY - Only return records on the BACS system
AFD_IRISH_ONLY - Only return records on the IPSO system

On return this value will be one of the following which can be useful when
validating through both systems:

 1 - On UK Clearing System

 2 - On Irish Clearing System
 3 - On Both Clearing Systems

sortCode is a string used to specify the sort code to be validated.

accountNumber is a string used to specify the account number to be
validated. It should be specified along with the sort code.

rollNumber is a string which is used to specify the Roll Number for validation.
This is required along with the sortcode and account number for credits made

to some building society accounts.

iban is a stringwhich can be used in-place of passing a sortcode and

accountnumber to validate an International Bank Account Number.

If the function returns a positive value (>=0) this should be taken to be valid.

Some non-standard account numbers may be transcribed to provide a

standard length account number for BACS processing. It is therefore
recommended that onward processing is done using the returned sortcode

(getValidateSortCode) and account number (getValidateAccountNo), and type
of account code returned (getValidateTypeOfAccountCode) rather than those
supplied to the function.

There are also additional functions to get an IBAN from a validated sortcode

and account number etc. The full list is given in section 6 of this manual.

The function returns one of the following values:

AFD_SUCCESS - Successful lookup (result returned)

AFD_VALIDATION_NOT_AVAILABLE - Successful, but validation isn’t
 available for this sortcode.
AFD_NOT_FOUND - Sortcode specified not found

AFD_ERROR_OPENING_FILES - Error opening BankFinder data files
AFD_DATA_LICENSE_ERROR - Data Licence Error

AFD_INVALID_SORTCODE - Sort code supplied is invalid

AFD BankFinder for Android API

Integration Guide – May 2013

 - 13 -

AFD_INVALID_ACCOUNT_NUMBER - Account number supplied is invalid
AFD_INVALID_ROLL_NUMBER - Roll number supplied is invalid

AFD_INVALID_IBAN - Invalid IBAN Supplied
AFD_UNRECOGNISED_COUNTRY - IBAN contained an unrecognised

 country code
AFD_IBAN_MISMATCH - Both a sort code, account number
 and IBAN were passed for

 validation but these did not
 match.

5.6 validateCard

Used to validate a card number to check it passes validation.

public int validateCard(int revisionID, String cardNumber, String expiryDate);

revisionID is an integer and should be set to 2. It is provided for future
proofing.

cardNumber is a String used to specify the card number you wish to validate.

expiryDate is a String used to specify the expiry date you wish to validate.
This is optional but if specified a check will be made that the card is in date.
This should be in the format MM/YY.

On return a positive value indicates the card is valid. The return value will

indicate the type of card as follows:

AFD_MASTERCARD - Mastercard

AFD_VISA - Visa
AFD_AMERICAN_EXPRESS - American Express

AFD_VISA_DEBIT - Visa Debit
AFD_VISA_UK_ELECTRON - UK Electron Card
AFD_VISA_PURCHASING - Visa Purchasing Card

AFD_UK_MAESTRO - UK Issued Maestro Card
AFD_INTERNATIONAL_MAESTRO - Maestro Card

AFD_SOLO_AND_MAESTRO - Solo and Maestro (combined) Card
AFD_JCB - JCB Card
AFD_CHARITIES_AID_FOUNDATION - Charities Aid Foundation Card

AFD_MASTERCARD_DEBIT - Mastercard Debit Card

A negative return value indicates an error has occurred and could be any of
the following:

AFD_ERROR_OPENING_FILES - Error opening BankFinder data files
AFD_DATA_LICENSE_ERROR - Data Licence Error

AFD_INVALID_EXPIRY - Expiry date specified is invalid
 (should be in format MM/YY)
AFD_CARD_EXPIRED - Card has expired

AFD_INVALID_CARD_NUMBER - Card Number supplied is invalid
AFD_VISA_ATM_ONLY - Visa card is valid for use in an ATM only

AFD BankFinder for Android API

Integration Guide – May 2013

 - 14 -

AFD_UNRECOGNISED_CARD - Card type is unrecognised.

5.7 errorText

Used to retrieve text to display a friendly error message to go with an error

code returned from the search or validation functions (return value less than
zero).

public String errorText(int errorCode)

errorCode is an integer and should be set to the return value from a previous
function call.

On return a description for the error is returned which can be stored or
displayed for the user.

5.8 cardText

Used to retrieve text to display or store the card type returned from the
ValidateCard function.

public String cardText(int cardType)

cardType is an integer and should be set to the return value from the
validateCard function when that function returns a positive value.

On return a description for the card is returned, e.g. Mastercard or Visa Debit.

5.9 saveLicense

Used to save a license file on the device from a Base64 encoded string
representation.

public int saveLicense(string base64License)

Base64License is the string containing the base64 encoded license data.

Returns:

0 Successfully applied license
-7 Data License Error (string is invalid)

5.10 checkForUpdate

Used to check if an update to the BankFinder data files is available.

public int checkForUpdate()

AFD BankFinder for Android API

Integration Guide – May 2013

 - 15 -

Returns:

1 Update Available
0 No Update Available (already on latest data)

-1 Error getting data (normally Internet connection issue)
 -7 Data License Error or Evaluation data present

5.11 downloadUpdate

Used to start downloading a data update.

public int downloadUpdate()

Returns:

1 Update started downloading

0 No Update Available (already on latest data)
-1 Error getting data (normally connection issue)

 -7 Data License Error or Evaluation data present

When the function returns data continues to download in the background so

your application can continue running. Poll with IsDownloadComplete
periodically to determine when the download has finished.

5.12 isDownloadComplete

Used to indicate when a data download has completed downloading

public int isDownloadComplete()

Returns:

1 Download Complete
0 Download still in progress
-1 No download started

 -2 Download failed (call DownloadUpdate to retry)

5.13 applyUpdate

Used to update data files following a successful download and loads the new
dataset.

public int applyUpdate()

Returns:

1 Update Successful
0 Download in progress or failed
-1 No update present to apply

 -7 Data License Error or Evaluation data present

AFD BankFinder for Android API

Integration Guide – May 2013

 - 16 -

Note that you mustn’t call the BankFinder functions while this call is
completing as old data will be unloaded, the new data unpacked and then

loaded during this call.

6. Properties Reference

Getter and setter methods are provided for the BankFinder fields. These are
as follows:

Field Name

Description

Search Fields (Any of these can be set prior to a call to bankGetFirst)

setSearchLookup

Specify sort code, postcode and fast-find lookup string’s here
for lookup operations. No other search fields should be set
when this is used.

setSearchSortCode Bank’s Sortcode

setSearchBankBIC Bank’s BIC Code

setSearchBranchBIC Branch BIC Code (should be used in conjunction with Bank

BIC)

setSearchPostcode Royal Mail Postcode for correspondence for the bank

setSearchBranchName Branch Name

setSearchBankName Owner Bank Name

setSearchTown Town or Location of the bank

setSearchPhone Phone Number

SearchText Specify text to search for within any of the BankFinder fields

General Bank Fields

getRecordKey Returns a record key (integer) to use for subsequent retrieval
of the record with JumpToRecord. Note this should not be
stored as it does not persist across data updates.

getBankSortCode Bank’s Sortcode

getBankBIC Bank BIC Code [1]

getBranchBIC Branch BIC Code [1]

getBankSubBranchSuffix Allows a branch to be uniquely identified where there is a

cluster of branches sharing the same Sort Code [1]

getBankShortBranchTitle The official title of the branch

getBankCentralBankCountryCode The ISO Country code for beneficiary banks in other
countries

getBankSupervisoryBody Indicates the supervisory body for an institution that is an
agency in any of the clearings. [2]

getBankDeletedDate Specifies the date the branch was closed if it is not active

getBankBranchTypeIndicator The branch type - Main Branch, Sub or NAB Branch, Linked

Branch

getBankMainBranchSortCode Set for linked branches in a cluster. It identifies the main
branch for the cluster. For IPSO records this is set to the
branch that would handle transactions for this sortcode when

the branch has been amalgamated with another.

getBankMajorLocationName Where present helps indicate the physical location of the
branch.

getBankMinorLocationName Where present helps indicate the physical location of the
branch.

getBankBranchName Defines the actual name or place of the branch

getBankBranchName2 An alternative name or place for the branch where applicable.

getBankFullBranchTitle Extended title for the institution

getBankOwnerBankShortName Short version of the name of the Owning Bank

getBankOwnerBankFullName Full version of the name of the Owning Bank

AFD BankFinder for Android API

Integration Guide – May 2013

 - 17 -

getBankOwnerBankCode The four digit bank code of the Owning Bank [1]

getBankProperty Bank Postal Address: Property (Building)

getBankStreet Bank Postal Address: Street

getBankLocality Bank Postal Address: Locality

getBankTown Bank Postal Address: Town

getBankCounty Bank Postal Address: County (Optional)

getBankPostcode The Royal Mail Postcode for this address

getBankSTDCode STD Code for the Bank Phone number

getBankPhone Phone number

getBankFaxSTDCode STD Code for the Bank Fax Number

getBankFax Fax number (where held)

getBankCountryIndicator Returns ‘U’ if the record is on the BACS system, or ‘I’ if the
record is on IPSO.

getBankSTDCode2 STD Code for a secondary Bank Phone number

getBankPhone2 Secondary Phone number (where held)

getBankList Returns a formatted line for list insertion containing elements
of the Bank record. Useful when displaying a list of branch

results for the user to choose from.

BACS Related Fields (Not applicable to IPSO Records)

getBACSStatus Indicates the BACS Clearing Status [4]

getBACSLastChange Date on which BACS data was last amended

getBACSClosedClearing Indicates the date the branch is closed in BACS clearing if
applicable.

getBACSRedirectedFromFlag Set to R if other branches are redirected to this sort code.

getBACSRedirectedToSortCode This specifies the sort code to which BACS should redirect

payments addressed to this sort code if applicable.

getBACSSettlementBankCode BACS Bank Code of the bank that will settle payments for
this branch.

getBACSSettlementBankShortName Short form name of the settlement bank

getBACSSettlementBankFullName Full form name of the settlement bank

getBACSSettlementBankSection Numeric data required for BACS to perform its settlement.

getBACSSettlementBankSubSection Numeric data required for BACS to perform its settlement.

getBACSHandlingBankCode BACS Bank Code of the member that will take BACS output
from this branch.

getBACSHandlingBankShortName Short form name of the handling bank

getBACSHandlingBankFullName Full form name of the handling bank

getBACSHandlingBankStream Numeric code defining the stream of output within the

Handling Bank that will be used or payments to this branch.

getBACSAccountNumbered Set to 1 if bank has transferrable account numbers

getBACSDDIVoucher Set to 1 if Paper Vouchers have to be printed for Direct Debit
Instructions.

getBACSDirectDebits Set to 1 if branch accepts Direct Debits

getBACSBankGiroCredits Set to 1 if branch accepts Bank Giro Credits

getBACSBuildingSocietyCredits Set to 1 if branch accepts Building Society Credits.

getBACSDividendInterestPayments Set to 1 if branch accepts Dividend Interest Payments.

getBACSDirectDebitInstructions Set to 1 if branch accepts Direct Debit Instructions.

getBACSUnpaidChequeClaims Set to 1 if branch accepts Unpaid Cheque Claims.

CHAPS Related Fields (Not applicable to IPSO Records)

getCHAPSPStatus Indicates the CHAPS Sterling clearing Status [5]

getCHAPSPStatusDescription Provides a description for the status [5]

getCHAPSPLastChange Date on which CHAPS Sterling data was last amended

getCHAPSPClosedClearing Indicates the date the branch is closed in CHAPS Sterling

clearing if applicable.

getCHAPSPSettlementBankCode CHAPS ID of the bank that will settle payments for this
branch,

getCHAPSPSettlementBankShortName Short form of the name of the settlement bank

AFD BankFinder for Android API

Integration Guide – May 2013

 - 18 -

getCHAPSPSettlementBankFullName Full form of the name of the settlement bank

C&CCC Related Fields (Not applicable to IPSO Records)

getCCCCStatus Indicates the C&CCC clearing Status [6]

getCCCCLastChange Date on which C&CCC data was last amended

getCCCCClosedClearing Indicates the date the branch is closed in C&CCC clearing if
applicable.

getCCCCSettlementBankCode BACS generated code of the bank that will settle payments

for this branch.

getCCCCSettlement BankShortName Short form of the name of the settlement bank

getCCCCSettlement BankFullName Full form of the name of the settlement bank

getCCCCDebitAgencySortCode When the Status field is set to 'D' this specifies where cheque
clearing is handled for this branch.

getCCCCReturnIndicator Set if this is the branch that other banks should return paper
to. It will only be set for a sort code of a Member.

getCCCCGBNIIndicator Set if this is the branch that other banks should return paper

to. It will only be set for a sort code of a Member.

FPS Related Fields (Not applicable to IPSO Records)

getFPSStatus Indicates the FPS clearing Status [7]

getFPSLastChange Date on which FPS data was last amended

getFPSClosedClearing Indicates the date the branch is closed in FPS clearing if
applicable.

getFPSRedirectedFromFlag Set to R if other branches are redirected to this sort code.

getFPSRedirectedToSortCode This specifies the sort code to which FPS should redirect

payments addressed to this sort code if applicable.

getFPSSettlementBankConnection Two digit connectivity code (will be 01 FPS Member)

getFPSSettlementBankCode Bank Code of the bank that will settle payments for this
branch.

getFPSSettlementBankShortName Short form name of the settlement bank

getFPSSettlementBankFullName Full form name of the settlement bank

getFPSHandlingBankConnection Two digit connectivity code

getFPSHandlingBankCode Bank Code of the bank that will handle payments for this
branch.

getFPSHandlingBankShortName Short form name of the handling bank

getFPSHandlingBankFullName Full form name of the handling bank

getFPSAccountNumberedFlag Set to 1 if bank has transferrable account numbers

getFPSAgencyType If getFPSStatus is ‘A’ this will be set to either ‘D’ for a direct

agency or ‘I’ for an indirect agency.

Account Validation Fields (Only applicable following a call to ValidateAccount)

getValidateSortCode Contains the validated sortcode, may be updated if account
number translation is required, e.g. for non-standard length

account numbers.

getValidateAccountNo Contains the validated account number, like the sortcode
may have been updated and this value is one that should be
submitted to BACS.

getValidateTypeOfAccountCode This returns the value required for the type of account code

field on BACS. This is normally zero but is required in some
cases when account numbers are translated from non-
standard lengths.

getValidateNeedRollNumber Indicates if a roll number is required for the sortcode and

account number specified. This will be one of the following
values:
-1 - No Roll Number required, but one was supplied

0 - No Roll Number required
1 - Roll Number required, but not supplied
2 - Roll Number required and one was supplied

getValidateIBAN If a sortcode and account number is validated this field will

AFD BankFinder for Android API

Integration Guide – May 2013

 - 19 -

return the corresponding IBAN were possible.

getValidateCountry Returns the country name corresponding to an IBAN passed
for validation.

Notes:

[1] Does not apply to records in the IPSO (Irish Payment Services Organisation) clearing

system.

[2] The supervisory body code can be any of the following:
 A. Bank of England

 B. Building Society Commission
 C. Jersey, Guernsey or Isle of Man authorities
 D. Other

[3] The clearing system property can have one of the following values

United Kingdom (BACS) – For branch records for the UK clearing system
Ireland (IPSO) – For branch records on the Irish Payment Services Organisation
Clearing System

Both UK and Irish – Returned by Account Number Validation only when a branch is
on both systems.

Note, that you should only accept account numbers validated on the Irish system if
you can clear through both the Irish (IPSO) system as well as the UK (BACS) system.

[4] Possible values for the BACS Status fields are as follows:
 M. Branch of a BACS Member
 A. Branch of an Agency Bank

 I. Member of the Irish Clearing Services (IPSO)
 Does not accept BACS Payments

[5] Possible values for the CHAPS Sterling Status fields are as follows:
M. Direct Branch of a CHAPS £ Member that Accepts CHAPS £ Payments

 A. Branch of an Agency Bank that Accepts CHAPS £ Payments

I. Indirect Branch of a Member or Agency Bank that Accepts CHAPS £
Payments

 Does not accept CHAPS £ Payments

[6] Possible values for the C&CCC Status fields are as follows:
 M. Branch of a C&CCC Member

 F. Full Agency Bank Branch
 D. Debit Agency Branch Only
 Not Part of the C&CCC Clearing

[7] Possible values for the FPS Status fields are as follows:
 M. Bank office of FPS member, accepts FPS payments

 A. Bank office of FPS agency bank, accepts FPS payments
 N. Bank office does not accept FPS payments.

